summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-exegesis/lib/X86/Target.cpp
blob: cebcb1c1aea411e737cb1179396bd68dbf52240f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../Target.h"

#include "../Latency.h"
#include "../SnippetGenerator.h"
#include "../Uops.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/MC/MCInstBuilder.h"

namespace llvm {
namespace exegesis {

// Returns an error if we cannot handle the memory references in this
// instruction.
static Error isInvalidMemoryInstr(const Instruction &Instr) {
  switch (Instr.Description->TSFlags & X86II::FormMask) {
  default:
    llvm_unreachable("Unknown FormMask value");
  // These have no memory access.
  case X86II::Pseudo:
  case X86II::RawFrm:
  case X86II::AddCCFrm:
  case X86II::MRMDestReg:
  case X86II::MRMSrcReg:
  case X86II::MRMSrcReg4VOp3:
  case X86II::MRMSrcRegOp4:
  case X86II::MRMSrcRegCC:
  case X86II::MRMXrCC:
  case X86II::MRMXr:
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r:
  case X86II::MRM_C0:
  case X86II::MRM_C1:
  case X86II::MRM_C2:
  case X86II::MRM_C3:
  case X86II::MRM_C4:
  case X86II::MRM_C5:
  case X86II::MRM_C6:
  case X86II::MRM_C7:
  case X86II::MRM_C8:
  case X86II::MRM_C9:
  case X86II::MRM_CA:
  case X86II::MRM_CB:
  case X86II::MRM_CC:
  case X86II::MRM_CD:
  case X86II::MRM_CE:
  case X86II::MRM_CF:
  case X86II::MRM_D0:
  case X86II::MRM_D1:
  case X86II::MRM_D2:
  case X86II::MRM_D3:
  case X86II::MRM_D4:
  case X86II::MRM_D5:
  case X86II::MRM_D6:
  case X86II::MRM_D7:
  case X86II::MRM_D8:
  case X86II::MRM_D9:
  case X86II::MRM_DA:
  case X86II::MRM_DB:
  case X86II::MRM_DC:
  case X86II::MRM_DD:
  case X86II::MRM_DE:
  case X86II::MRM_DF:
  case X86II::MRM_E0:
  case X86II::MRM_E1:
  case X86II::MRM_E2:
  case X86II::MRM_E3:
  case X86II::MRM_E4:
  case X86II::MRM_E5:
  case X86II::MRM_E6:
  case X86II::MRM_E7:
  case X86II::MRM_E8:
  case X86II::MRM_E9:
  case X86II::MRM_EA:
  case X86II::MRM_EB:
  case X86II::MRM_EC:
  case X86II::MRM_ED:
  case X86II::MRM_EE:
  case X86II::MRM_EF:
  case X86II::MRM_F0:
  case X86II::MRM_F1:
  case X86II::MRM_F2:
  case X86II::MRM_F3:
  case X86II::MRM_F4:
  case X86II::MRM_F5:
  case X86II::MRM_F6:
  case X86II::MRM_F7:
  case X86II::MRM_F8:
  case X86II::MRM_F9:
  case X86II::MRM_FA:
  case X86II::MRM_FB:
  case X86II::MRM_FC:
  case X86II::MRM_FD:
  case X86II::MRM_FE:
  case X86II::MRM_FF:
  case X86II::RawFrmImm8:
    return Error::success();
  case X86II::AddRegFrm:
    return (Instr.Description->Opcode == X86::POP16r || Instr.Description->Opcode == X86::POP32r ||
            Instr.Description->Opcode == X86::PUSH16r || Instr.Description->Opcode == X86::PUSH32r)
               ? make_error<BenchmarkFailure>(
                     "unsupported opcode: unsupported memory access")
               : Error::success();
  // These access memory and are handled.
  case X86II::MRMDestMem:
  case X86II::MRMSrcMem:
  case X86II::MRMSrcMem4VOp3:
  case X86II::MRMSrcMemOp4:
  case X86II::MRMSrcMemCC:
  case X86II::MRMXmCC:
  case X86II::MRMXm:
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m:
    return Error::success();
  // These access memory and are not handled yet.
  case X86II::RawFrmImm16:
  case X86II::RawFrmMemOffs:
  case X86II::RawFrmSrc:
  case X86II::RawFrmDst:
  case X86II::RawFrmDstSrc:
    return make_error<BenchmarkFailure>(
        "unsupported opcode: non uniform memory access");
  }
}

static llvm::Error IsInvalidOpcode(const Instruction &Instr) {
  const auto OpcodeName = Instr.Name;
  if ((Instr.Description->TSFlags & X86II::FormMask) == X86II::Pseudo)
    return llvm::make_error<BenchmarkFailure>(
        "unsupported opcode: pseudo instruction");
  if (OpcodeName.startswith("POPF") || OpcodeName.startswith("PUSHF") ||
      OpcodeName.startswith("ADJCALLSTACK"))
    return llvm::make_error<BenchmarkFailure>(
        "unsupported opcode: Push/Pop/AdjCallStack");
  if (llvm::Error Error = isInvalidMemoryInstr(Instr))
    return Error;
  // We do not handle instructions with OPERAND_PCREL.
  for (const Operand &Op : Instr.Operands)
    if (Op.isExplicit() &&
        Op.getExplicitOperandInfo().OperandType == llvm::MCOI::OPERAND_PCREL)
      return llvm::make_error<BenchmarkFailure>(
          "unsupported opcode: PC relative operand");
  // We do not handle second-form X87 instructions. We only handle first-form
  // ones (_Fp), see comment in X86InstrFPStack.td.
  for (const Operand &Op : Instr.Operands)
    if (Op.isReg() && Op.isExplicit() &&
        Op.getExplicitOperandInfo().RegClass == llvm::X86::RSTRegClassID)
      return llvm::make_error<BenchmarkFailure>(
          "unsupported second-form X87 instruction");
  return llvm::Error::success();
}

static unsigned getX86FPFlags(const Instruction &Instr) {
  return Instr.Description->TSFlags & llvm::X86II::FPTypeMask;
}

namespace {
class X86LatencySnippetGenerator : public LatencySnippetGenerator {
public:
  using LatencySnippetGenerator::LatencySnippetGenerator;

  llvm::Expected<std::vector<CodeTemplate>>
  generateCodeTemplates(const Instruction &Instr) const override;
};
} // namespace

llvm::Expected<std::vector<CodeTemplate>>
X86LatencySnippetGenerator::generateCodeTemplates(
    const Instruction &Instr) const {
  if (auto E = IsInvalidOpcode(Instr))
    return std::move(E);

  switch (getX86FPFlags(Instr)) {
  case llvm::X86II::NotFP:
    return LatencySnippetGenerator::generateCodeTemplates(Instr);
  case llvm::X86II::ZeroArgFP:
  case llvm::X86II::OneArgFP:
  case llvm::X86II::SpecialFP:
  case llvm::X86II::CompareFP:
  case llvm::X86II::CondMovFP:
    return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
  case llvm::X86II::OneArgFPRW:
  case llvm::X86II::TwoArgFP:
    // These are instructions like
    //   - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
    //   - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
    // They are intrinsically serial and do not modify the state of the stack.
    return generateSelfAliasingCodeTemplates(Instr);
  default:
    llvm_unreachable("Unknown FP Type!");
  }
}

namespace {
class X86UopsSnippetGenerator : public UopsSnippetGenerator {
public:
  using UopsSnippetGenerator::UopsSnippetGenerator;

  llvm::Expected<std::vector<CodeTemplate>>
  generateCodeTemplates(const Instruction &Instr) const override;
};
} // namespace

llvm::Expected<std::vector<CodeTemplate>>
X86UopsSnippetGenerator::generateCodeTemplates(
    const Instruction &Instr) const {
  if (auto E = IsInvalidOpcode(Instr))
    return std::move(E);

  switch (getX86FPFlags(Instr)) {
  case llvm::X86II::NotFP:
    return UopsSnippetGenerator::generateCodeTemplates(Instr);
  case llvm::X86II::ZeroArgFP:
  case llvm::X86II::OneArgFP:
  case llvm::X86II::SpecialFP:
    return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
  case llvm::X86II::OneArgFPRW:
  case llvm::X86II::TwoArgFP:
    // These are instructions like
    //   - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
    //   - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
    // They are intrinsically serial and do not modify the state of the stack.
    // We generate the same code for latency and uops.
    return generateSelfAliasingCodeTemplates(Instr);
  case llvm::X86II::CompareFP:
  case llvm::X86II::CondMovFP:
    // We can compute uops for any FP instruction that does not grow or shrink
    // the stack (either do not touch the stack or push as much as they pop).
    return generateUnconstrainedCodeTemplates(
        Instr, "instruction does not grow/shrink the FP stack");
  default:
    llvm_unreachable("Unknown FP Type!");
  }
}

static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) {
  switch (RegBitWidth) {
  case 8:
    return llvm::X86::MOV8ri;
  case 16:
    return llvm::X86::MOV16ri;
  case 32:
    return llvm::X86::MOV32ri;
  case 64:
    return llvm::X86::MOV64ri;
  }
  llvm_unreachable("Invalid Value Width");
}

// Generates instruction to load an immediate value into a register.
static llvm::MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
                                  const llvm::APInt &Value) {
  if (Value.getBitWidth() > RegBitWidth)
    llvm_unreachable("Value must fit in the Register");
  return llvm::MCInstBuilder(getLoadImmediateOpcode(RegBitWidth))
      .addReg(Reg)
      .addImm(Value.getZExtValue());
}

// Allocates scratch memory on the stack.
static llvm::MCInst allocateStackSpace(unsigned Bytes) {
  return llvm::MCInstBuilder(llvm::X86::SUB64ri8)
      .addReg(llvm::X86::RSP)
      .addReg(llvm::X86::RSP)
      .addImm(Bytes);
}

// Fills scratch memory at offset `OffsetBytes` with value `Imm`.
static llvm::MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
                                   uint64_t Imm) {
  return llvm::MCInstBuilder(MovOpcode)
      // Address = ESP
      .addReg(llvm::X86::RSP) // BaseReg
      .addImm(1)              // ScaleAmt
      .addReg(0)              // IndexReg
      .addImm(OffsetBytes)    // Disp
      .addReg(0)              // Segment
      // Immediate.
      .addImm(Imm);
}

// Loads scratch memory into register `Reg` using opcode `RMOpcode`.
static llvm::MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
  return llvm::MCInstBuilder(RMOpcode)
      .addReg(Reg)
      // Address = ESP
      .addReg(llvm::X86::RSP) // BaseReg
      .addImm(1)              // ScaleAmt
      .addReg(0)              // IndexReg
      .addImm(0)              // Disp
      .addReg(0);             // Segment
}

// Releases scratch memory.
static llvm::MCInst releaseStackSpace(unsigned Bytes) {
  return llvm::MCInstBuilder(llvm::X86::ADD64ri8)
      .addReg(llvm::X86::RSP)
      .addReg(llvm::X86::RSP)
      .addImm(Bytes);
}

// Reserves some space on the stack, fills it with the content of the provided
// constant and provide methods to load the stack value into a register.
namespace {
struct ConstantInliner {
  explicit ConstantInliner(const llvm::APInt &Constant) : Constant_(Constant) {}

  std::vector<llvm::MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
                                            unsigned Opcode);

  std::vector<llvm::MCInst> loadX87STAndFinalize(unsigned Reg);

  std::vector<llvm::MCInst> loadX87FPAndFinalize(unsigned Reg);

  std::vector<llvm::MCInst> popFlagAndFinalize();

private:
  ConstantInliner &add(const llvm::MCInst &Inst) {
    Instructions.push_back(Inst);
    return *this;
  }

  void initStack(unsigned Bytes);

  static constexpr const unsigned kF80Bytes = 10; // 80 bits.

  llvm::APInt Constant_;
  std::vector<llvm::MCInst> Instructions;
};
} // namespace

std::vector<llvm::MCInst> ConstantInliner::loadAndFinalize(unsigned Reg,
                                                           unsigned RegBitWidth,
                                                           unsigned Opcode) {
  assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits");
  initStack(RegBitWidth / 8);
  add(loadToReg(Reg, Opcode));
  add(releaseStackSpace(RegBitWidth / 8));
  return std::move(Instructions);
}

std::vector<llvm::MCInst> ConstantInliner::loadX87STAndFinalize(unsigned Reg) {
  initStack(kF80Bytes);
  add(llvm::MCInstBuilder(llvm::X86::LD_F80m)
          // Address = ESP
          .addReg(llvm::X86::RSP) // BaseReg
          .addImm(1)              // ScaleAmt
          .addReg(0)              // IndexReg
          .addImm(0)              // Disp
          .addReg(0));            // Segment
  if (Reg != llvm::X86::ST0)
    add(llvm::MCInstBuilder(llvm::X86::ST_Frr).addReg(Reg));
  add(releaseStackSpace(kF80Bytes));
  return std::move(Instructions);
}

std::vector<llvm::MCInst> ConstantInliner::loadX87FPAndFinalize(unsigned Reg) {
  initStack(kF80Bytes);
  add(llvm::MCInstBuilder(llvm::X86::LD_Fp80m)
          .addReg(Reg)
          // Address = ESP
          .addReg(llvm::X86::RSP) // BaseReg
          .addImm(1)              // ScaleAmt
          .addReg(0)              // IndexReg
          .addImm(0)              // Disp
          .addReg(0));            // Segment
  add(releaseStackSpace(kF80Bytes));
  return std::move(Instructions);
}

std::vector<llvm::MCInst> ConstantInliner::popFlagAndFinalize() {
  initStack(8);
  add(llvm::MCInstBuilder(llvm::X86::POPF64));
  return std::move(Instructions);
}

void ConstantInliner::initStack(unsigned Bytes) {
  assert(Constant_.getBitWidth() <= Bytes * 8 &&
         "Value does not have the correct size");
  const llvm::APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
                                       ? Constant_.sext(Bytes * 8)
                                       : Constant_;
  add(allocateStackSpace(Bytes));
  size_t ByteOffset = 0;
  for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
    add(fillStackSpace(
        llvm::X86::MOV32mi, ByteOffset,
        WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
  if (Bytes - ByteOffset >= 2) {
    add(fillStackSpace(
        llvm::X86::MOV16mi, ByteOffset,
        WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
    ByteOffset += 2;
  }
  if (Bytes - ByteOffset >= 1)
    add(fillStackSpace(
        llvm::X86::MOV8mi, ByteOffset,
        WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
}

#include "X86GenExegesis.inc"

namespace {
class ExegesisX86Target : public ExegesisTarget {
public:
  ExegesisX86Target() : ExegesisTarget(X86CpuPfmCounters) {}

private:
  void addTargetSpecificPasses(llvm::PassManagerBase &PM) const override;

  unsigned getScratchMemoryRegister(const llvm::Triple &TT) const override;

  unsigned getMaxMemoryAccessSize() const override { return 64; }

  void randomizeMCOperand(const Instruction &Instr, const Variable &Var,
                          llvm::MCOperand &AssignedValue,
                          const llvm::BitVector &ForbiddenRegs) const override;

  void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
                          unsigned Offset) const override;

  std::vector<llvm::MCInst> setRegTo(const llvm::MCSubtargetInfo &STI,
                                     unsigned Reg,
                                     const llvm::APInt &Value) const override;

  ArrayRef<unsigned> getUnavailableRegisters() const override {
    return makeArrayRef(kUnavailableRegisters,
                        sizeof(kUnavailableRegisters) /
                            sizeof(kUnavailableRegisters[0]));
  }

  std::unique_ptr<SnippetGenerator>
  createLatencySnippetGenerator(const LLVMState &State) const override {
    return std::make_unique<X86LatencySnippetGenerator>(State);
  }

  std::unique_ptr<SnippetGenerator>
  createUopsSnippetGenerator(const LLVMState &State) const override {
    return std::make_unique<X86UopsSnippetGenerator>(State);
  }

  bool matchesArch(llvm::Triple::ArchType Arch) const override {
    return Arch == llvm::Triple::x86_64 || Arch == llvm::Triple::x86;
  }

  static const unsigned kUnavailableRegisters[4];
};

// We disable a few registers that cannot be encoded on instructions with a REX
// prefix.
const unsigned ExegesisX86Target::kUnavailableRegisters[4] = {X86::AH, X86::BH,
                                                              X86::CH, X86::DH};
} // namespace

void ExegesisX86Target::addTargetSpecificPasses(
    llvm::PassManagerBase &PM) const {
  // Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
  PM.add(llvm::createX86FloatingPointStackifierPass());
}

unsigned
ExegesisX86Target::getScratchMemoryRegister(const llvm::Triple &TT) const {
  if (!TT.isArch64Bit()) {
    // FIXME: This would require popping from the stack, so we would have to
    // add some additional setup code.
    return 0;
  }
  return TT.isOSWindows() ? llvm::X86::RCX : llvm::X86::RDI;
}

void ExegesisX86Target::randomizeMCOperand(
    const Instruction &Instr, const Variable &Var,
    llvm::MCOperand &AssignedValue,
    const llvm::BitVector &ForbiddenRegs) const {
  ExegesisTarget::randomizeMCOperand(Instr, Var, AssignedValue, ForbiddenRegs);

  const Operand &Op = Instr.getPrimaryOperand(Var);
  switch (Op.getExplicitOperandInfo().OperandType) {
  case llvm::X86::OperandType::OPERAND_COND_CODE:
    AssignedValue = llvm::MCOperand::createImm(
        randomIndex(llvm::X86::CondCode::LAST_VALID_COND));
    break;
  default:
    break;
  }
}

void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
                                           unsigned Reg,
                                           unsigned Offset) const {
  assert(!isInvalidMemoryInstr(IT.Instr) &&
         "fillMemoryOperands requires a valid memory instruction");
  int MemOpIdx = X86II::getMemoryOperandNo(IT.Instr.Description->TSFlags);
  assert(MemOpIdx >= 0 && "invalid memory operand index");
  // getMemoryOperandNo() ignores tied operands, so we have to add them back.
  for (unsigned I = 0; I <= static_cast<unsigned>(MemOpIdx); ++I) {
    const auto &Op = IT.Instr.Operands[I];
    if (Op.isTied() && Op.getTiedToIndex() < I) {
      ++MemOpIdx;
    }
  }
  // Now fill in the memory operands.
  const auto SetOp = [&IT](int OpIdx, const MCOperand &OpVal) {
    const auto Op = IT.Instr.Operands[OpIdx];
    assert(Op.isMemory() && Op.isExplicit() && "invalid memory pattern");
    IT.getValueFor(Op) = OpVal;
  };
  SetOp(MemOpIdx + 0, MCOperand::createReg(Reg));    // BaseReg
  SetOp(MemOpIdx + 1, MCOperand::createImm(1));      // ScaleAmt
  SetOp(MemOpIdx + 2, MCOperand::createReg(0));      // IndexReg
  SetOp(MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp
  SetOp(MemOpIdx + 4, MCOperand::createReg(0));      // Segment
}

std::vector<llvm::MCInst>
ExegesisX86Target::setRegTo(const llvm::MCSubtargetInfo &STI, unsigned Reg,
                            const llvm::APInt &Value) const {
  if (llvm::X86::GR8RegClass.contains(Reg))
    return {loadImmediate(Reg, 8, Value)};
  if (llvm::X86::GR16RegClass.contains(Reg))
    return {loadImmediate(Reg, 16, Value)};
  if (llvm::X86::GR32RegClass.contains(Reg))
    return {loadImmediate(Reg, 32, Value)};
  if (llvm::X86::GR64RegClass.contains(Reg))
    return {loadImmediate(Reg, 64, Value)};
  ConstantInliner CI(Value);
  if (llvm::X86::VR64RegClass.contains(Reg))
    return CI.loadAndFinalize(Reg, 64, llvm::X86::MMX_MOVQ64rm);
  if (llvm::X86::VR128XRegClass.contains(Reg)) {
    if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
      return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQU32Z128rm);
    if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
      return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQUrm);
    return CI.loadAndFinalize(Reg, 128, llvm::X86::MOVDQUrm);
  }
  if (llvm::X86::VR256XRegClass.contains(Reg)) {
    if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
      return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQU32Z256rm);
    if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
      return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQUYrm);
  }
  if (llvm::X86::VR512RegClass.contains(Reg))
    if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
      return CI.loadAndFinalize(Reg, 512, llvm::X86::VMOVDQU32Zrm);
  if (llvm::X86::RSTRegClass.contains(Reg)) {
    return CI.loadX87STAndFinalize(Reg);
  }
  if (llvm::X86::RFP32RegClass.contains(Reg) ||
      llvm::X86::RFP64RegClass.contains(Reg) ||
      llvm::X86::RFP80RegClass.contains(Reg)) {
    return CI.loadX87FPAndFinalize(Reg);
  }
  if (Reg == llvm::X86::EFLAGS)
    return CI.popFlagAndFinalize();
  return {}; // Not yet implemented.
}

static ExegesisTarget *getTheExegesisX86Target() {
  static ExegesisX86Target Target;
  return &Target;
}

void InitializeX86ExegesisTarget() {
  ExegesisTarget::registerTarget(getTheExegesisX86Target());
}

} // namespace exegesis
} // namespace llvm
OpenPOWER on IntegriCloud