summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-exegesis/lib/InstructionSnippetGenerator.cpp
blob: 2ab3379faedfa36d1cb353f77e50197f2b2847d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//===-- InstructionSnippetGenerator.cpp -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "InstructionSnippetGenerator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInstBuilder.h"
#include <algorithm>
#include <unordered_map>
#include <unordered_set>

namespace exegesis {

void Variable::print(llvm::raw_ostream &OS,
                     const llvm::MCRegisterInfo *RegInfo) const {
  OS << "IsUse=" << IsUse << " IsDef=" << IsDef << " possible regs: {";
  for (const size_t Reg : PossibleRegisters) {
    if (RegInfo)
      OS << RegInfo->getName(Reg);
    else
      OS << Reg;
    OS << ",";
  }
  OS << "} ";
  if (ExplicitOperands.empty()) {
    OS << "implicit";
  } else {
    OS << "explicit ops: {";
    for (const size_t Op : ExplicitOperands)
      OS << Op << ",";
    OS << "}";
  }
  OS << "\n";
}

// Update the state of a Variable with an explicit operand.
static void updateExplicitOperandVariable(const llvm::MCRegisterInfo &RegInfo,
                                          const llvm::MCInstrDesc &InstrInfo,
                                          const size_t OpIndex,
                                          const llvm::BitVector &ReservedRegs,
                                          Variable &Var) {
  const bool IsDef = OpIndex < InstrInfo.getNumDefs();
  if (IsDef)
    Var.IsDef = true;
  if (!IsDef)
    Var.IsUse = true;
  Var.ExplicitOperands.push_back(OpIndex);
  const llvm::MCOperandInfo &OpInfo = InstrInfo.opInfo_begin()[OpIndex];
  if (OpInfo.RegClass >= 0) {
    Var.IsReg = true;
    for (const llvm::MCPhysReg &Reg : RegInfo.getRegClass(OpInfo.RegClass)) {
      if (!ReservedRegs[Reg])
        Var.PossibleRegisters.insert(Reg);
    }
  }
}

static Variable &findVariableWithOperand(llvm::SmallVector<Variable, 8> &Vars,
                                         size_t OpIndex) {
  // Vars.size() is small (<10) so a linear scan is good enough.
  for (Variable &Var : Vars) {
    if (llvm::is_contained(Var.ExplicitOperands, OpIndex))
      return Var;
  }
  assert(false && "Illegal state");
  static Variable *const EmptyVariable = new Variable();
  return *EmptyVariable;
}

llvm::SmallVector<Variable, 8>
getVariables(const llvm::MCRegisterInfo &RegInfo,
             const llvm::MCInstrDesc &InstrInfo,
             const llvm::BitVector &ReservedRegs) {
  llvm::SmallVector<Variable, 8> Vars;
  // For each operand, its "tied to" operand or -1.
  llvm::SmallVector<int, 10> TiedToMap;
  for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
    TiedToMap.push_back(InstrInfo.getOperandConstraint(I, llvm::MCOI::TIED_TO));
  }
  // Adding non tied operands.
  for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
    if (TiedToMap[I] >= 0)
      continue; // dropping tied ones.
    Vars.emplace_back();
    updateExplicitOperandVariable(RegInfo, InstrInfo, I, ReservedRegs,
                                  Vars.back());
  }
  // Adding tied operands to existing variables.
  for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
    if (TiedToMap[I] < 0)
      continue; // dropping non-tied ones.
    updateExplicitOperandVariable(RegInfo, InstrInfo, I, ReservedRegs,
                                  findVariableWithOperand(Vars, TiedToMap[I]));
  }
  // Adding implicit defs.
  for (size_t I = 0, E = InstrInfo.getNumImplicitDefs(); I < E; ++I) {
    Vars.emplace_back();
    Variable &Var = Vars.back();
    const llvm::MCPhysReg Reg = InstrInfo.getImplicitDefs()[I];
    assert(!ReservedRegs[Reg] && "implicit def of reserved register");
    Var.PossibleRegisters.insert(Reg);
    Var.IsDef = true;
    Var.IsReg = true;
  }
  // Adding implicit uses.
  for (size_t I = 0, E = InstrInfo.getNumImplicitUses(); I < E; ++I) {
    Vars.emplace_back();
    Variable &Var = Vars.back();
    const llvm::MCPhysReg Reg = InstrInfo.getImplicitUses()[I];
    assert(!ReservedRegs[Reg] && "implicit use of reserved register");
    Var.PossibleRegisters.insert(Reg);
    Var.IsUse = true;
    Var.IsReg = true;
  }

  return Vars;
}

VariableAssignment::VariableAssignment(size_t VarIdx,
                                       llvm::MCPhysReg AssignedReg)
    : VarIdx(VarIdx), AssignedReg(AssignedReg) {}

bool VariableAssignment::operator==(const VariableAssignment &Other) const {
  return std::tie(VarIdx, AssignedReg) ==
         std::tie(Other.VarIdx, Other.AssignedReg);
}

bool VariableAssignment::operator<(const VariableAssignment &Other) const {
  return std::tie(VarIdx, AssignedReg) <
         std::tie(Other.VarIdx, Other.AssignedReg);
}

void dumpAssignmentChain(const llvm::MCRegisterInfo &RegInfo,
                         const AssignmentChain &Chain) {
  for (const VariableAssignment &Assignment : Chain) {
    llvm::outs() << llvm::format("(%d %s) ", Assignment.VarIdx,
                                 RegInfo.getName(Assignment.AssignedReg));
  }
  llvm::outs() << "\n";
}

std::vector<AssignmentChain>
computeSequentialAssignmentChains(const llvm::MCRegisterInfo &RegInfo,
                                  llvm::ArrayRef<Variable> Vars) {
  using graph::Node;
  graph::Graph Graph;

  // Add register aliasing to the graph.
  setupRegisterAliasing(RegInfo, Graph);

  // Adding variables to the graph.
  for (size_t I = 0, E = Vars.size(); I < E; ++I) {
    const Variable &Var = Vars[I];
    const Node N = Node::Var(I);
    if (Var.IsDef) {
      Graph.connect(Node::In(), N);
      for (const size_t Reg : Var.PossibleRegisters)
        Graph.connect(N, Node::Reg(Reg));
    }
    if (Var.IsUse) {
      Graph.connect(N, Node::Out());
      for (const size_t Reg : Var.PossibleRegisters)
        Graph.connect(Node::Reg(Reg), N);
    }
  }

  // Find all possible dependency chains (aka all possible paths from In to Out
  // node).
  std::vector<AssignmentChain> AllChains;
  for (;;) {
    const auto Path = Graph.getPathFrom(Node::In(), Node::Out());
    if (Path.empty())
      break;
    switch (Path.size()) {
    case 0:
    case 1:
    case 2:
    case 4:
      assert(false && "Illegal state");
      break;
    case 3: { // IN -> variable -> OUT
      const size_t VarIdx = Path[1].varValue();
      for (size_t Reg : Vars[VarIdx].PossibleRegisters) {
        AllChains.emplace_back();
        AllChains.back().emplace(VarIdx, Reg);
      }
      Graph.disconnect(Path[0], Path[1]); // IN -> variable
      Graph.disconnect(Path[1], Path[2]); // variable -> OUT
      break;
    }
    default: { // IN -> var1 -> Reg[...] -> var2 -> OUT
      const size_t Last = Path.size() - 1;
      const size_t Var1 = Path[1].varValue();
      const llvm::MCPhysReg Reg1 = Path[2].regValue();
      const llvm::MCPhysReg Reg2 = Path[Last - 2].regValue();
      const size_t Var2 = Path[Last - 1].varValue();
      AllChains.emplace_back();
      AllChains.back().emplace(Var1, Reg1);
      AllChains.back().emplace(Var2, Reg2);
      Graph.disconnect(Path[1], Path[2]); // Var1 -> Reg[0]
      break;
    }
    }
  }

  return AllChains;
}

std::vector<llvm::MCPhysReg>
getRandomAssignment(llvm::ArrayRef<Variable> Vars,
                    llvm::ArrayRef<AssignmentChain> Chains,
                    const std::function<size_t(size_t)> &RandomIndexForSize) {
  // Registers are initialized with 0 (aka NoRegister).
  std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
  if (Chains.empty())
    return Registers;
  // Pick one of the chains and set Registers that are fully constrained (have
  // no degrees of freedom).
  const size_t ChainIndex = RandomIndexForSize(Chains.size());
  for (const VariableAssignment Assignment : Chains[ChainIndex])
    Registers[Assignment.VarIdx] = Assignment.AssignedReg;
  // Registers with remaining degrees of freedom are assigned randomly.
  for (size_t I = 0, E = Vars.size(); I < E; ++I) {
    llvm::MCPhysReg &Reg = Registers[I];
    const Variable &Var = Vars[I];
    const auto &PossibleRegisters = Var.PossibleRegisters;
    if (Reg > 0 || PossibleRegisters.empty())
      continue;
    Reg = PossibleRegisters[RandomIndexForSize(PossibleRegisters.size())];
  }
  return Registers;
}

// Finds a matching register `reg` for variable `VarIdx` and sets
// `RegAssignments[r]` to `VarIdx`. Returns false if no matching can be found.
// `seen.count(r)` is 1 if register `reg` has been processed.
static bool findMatchingRegister(
    llvm::ArrayRef<Variable> Vars, const size_t VarIdx,
    std::unordered_set<llvm::MCPhysReg> &Seen,
    std::unordered_map<llvm::MCPhysReg, size_t> &RegAssignments) {
  for (const llvm::MCPhysReg Reg : Vars[VarIdx].PossibleRegisters) {
    if (!Seen.count(Reg)) {
      Seen.insert(Reg); // Mark `Reg` as seen.
      // If `Reg` is not assigned to a variable, or if `Reg` was assigned to a
      // variable which has an alternate possible register, assign `Reg` to
      // variable `VarIdx`. Since `Reg` is marked as assigned in the above line,
      // `RegAssignments[r]` in the following recursive call will not get
      // assigned `Reg` again.
      const auto AssignedVarIt = RegAssignments.find(Reg);
      if (AssignedVarIt == RegAssignments.end() ||
          findMatchingRegister(Vars, AssignedVarIt->second, Seen,
                               RegAssignments)) {
        RegAssignments[Reg] = VarIdx;
        return true;
      }
    }
  }
  return false;
}

// This is actually a maximum bipartite matching problem:
//   https://en.wikipedia.org/wiki/Matching_(graph_theory)#Bipartite_matching
// The graph has variables on the left and registers on the right, with an edge
// between variable `I` and register `Reg` iff
// `Vars[I].PossibleRegisters.count(A)`.
// Note that a greedy approach won't work for cases like:
//   Vars[0] PossibleRegisters={C,B}
//   Vars[1] PossibleRegisters={A,B}
//   Vars[2] PossibleRegisters={A,C}
// There is a feasible solution {0->B, 1->A, 2->C}, but the greedy solution is
// {0->C, 1->A, oops}.
std::vector<llvm::MCPhysReg>
getExclusiveAssignment(llvm::ArrayRef<Variable> Vars) {
  // `RegAssignments[r]` is the variable id that was assigned register `Reg`.
  std::unordered_map<llvm::MCPhysReg, size_t> RegAssignments;

  for (size_t VarIdx = 0, E = Vars.size(); VarIdx < E; ++VarIdx) {
    if (!Vars[VarIdx].IsReg)
      continue;
    std::unordered_set<llvm::MCPhysReg> Seen;
    if (!findMatchingRegister(Vars, VarIdx, Seen, RegAssignments))
      return {}; // Infeasible.
  }

  std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
  for (const auto &RegVarIdx : RegAssignments)
    Registers[RegVarIdx.second] = RegVarIdx.first;
  return Registers;
}

std::vector<llvm::MCPhysReg>
getGreedyAssignment(llvm::ArrayRef<Variable> Vars) {
  std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
  llvm::SmallSet<llvm::MCPhysReg, 8> Assigned;
  for (size_t VarIdx = 0, E = Vars.size(); VarIdx < E; ++VarIdx) {
    const auto &Var = Vars[VarIdx];
    if (!Var.IsReg)
      continue;
    if (Var.PossibleRegisters.empty())
      return {};
    // Try possible registers until an unassigned one is found.
    for (const auto Reg : Var.PossibleRegisters) {
      if (Assigned.insert(Reg).second) {
        Registers[VarIdx] = Reg;
        break;
      }
    }
    // Fallback to first possible register.
    if (Registers[VarIdx] == 0)
      Registers[VarIdx] = Var.PossibleRegisters[0];
  }
  return Registers;
}

llvm::MCInst generateMCInst(const llvm::MCInstrDesc &InstrInfo,
                            llvm::ArrayRef<Variable> Vars,
                            llvm::ArrayRef<llvm::MCPhysReg> VarRegs) {
  const size_t NumOperands = InstrInfo.getNumOperands();
  llvm::SmallVector<llvm::MCPhysReg, 16> OperandToRegister(NumOperands, 0);

  // We browse the variable and for each explicit operands we set the selected
  // register in the OperandToRegister array.
  for (size_t I = 0, E = Vars.size(); I < E; ++I) {
    for (const size_t OpIndex : Vars[I].ExplicitOperands) {
      OperandToRegister[OpIndex] = VarRegs[I];
    }
  }

  // Building the instruction.
  llvm::MCInstBuilder Builder(InstrInfo.getOpcode());
  for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
    const llvm::MCOperandInfo &OpInfo = InstrInfo.opInfo_begin()[I];
    switch (OpInfo.OperandType) {
    case llvm::MCOI::OperandType::OPERAND_REGISTER:
      Builder.addReg(OperandToRegister[I]);
      break;
    case llvm::MCOI::OperandType::OPERAND_IMMEDIATE:
      Builder.addImm(1);
      break;
    default:
      Builder.addOperand(llvm::MCOperand());
    }
  }

  return Builder;
}

} // namespace exegesis
OpenPOWER on IntegriCloud