summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-exegesis/lib/BenchmarkRunner.cpp
blob: 55012bc1e83fc4c892629d46542b8b0568aa7d4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include <array>
#include <string>

#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"

namespace exegesis {

BenchmarkFailure::BenchmarkFailure(const llvm::Twine &S)
    : llvm::StringError(S, llvm::inconvertibleErrorCode()) {}

BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
                                 InstructionBenchmark::ModeE Mode)
    : State(State), RATC(State.getRegInfo(),
                         getFunctionReservedRegs(State.getTargetMachine())),
      Mode(Mode) {}

BenchmarkRunner::~BenchmarkRunner() = default;

llvm::Expected<std::vector<InstructionBenchmark>>
BenchmarkRunner::run(unsigned Opcode, unsigned NumRepetitions) {
  const llvm::MCInstrDesc &InstrDesc = State.getInstrInfo().get(Opcode);
  // Ignore instructions that we cannot run.
  if (InstrDesc.isPseudo())
    return llvm::make_error<BenchmarkFailure>("Unsupported opcode: isPseudo");
  if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
    return llvm::make_error<BenchmarkFailure>(
        "Unsupported opcode: isBranch/isIndirectBranch");
  if (InstrDesc.isCall() || InstrDesc.isReturn())
    return llvm::make_error<BenchmarkFailure>(
        "Unsupported opcode: isCall/isReturn");

  llvm::Expected<std::vector<BenchmarkConfiguration>> ConfigurationOrError =
      generateConfigurations(Opcode);

  if (llvm::Error E = ConfigurationOrError.takeError())
    return std::move(E);

  std::vector<InstructionBenchmark> InstrBenchmarks;
  for (const BenchmarkConfiguration &Conf : ConfigurationOrError.get())
    InstrBenchmarks.push_back(runOne(Conf, Opcode, NumRepetitions));
  return InstrBenchmarks;
}

InstructionBenchmark
BenchmarkRunner::runOne(const BenchmarkConfiguration &Configuration,
                        unsigned Opcode, unsigned NumRepetitions) const {
  InstructionBenchmark InstrBenchmark;
  InstrBenchmark.Mode = Mode;
  InstrBenchmark.CpuName = State.getTargetMachine().getTargetCPU();
  InstrBenchmark.LLVMTriple =
      State.getTargetMachine().getTargetTriple().normalize();
  InstrBenchmark.NumRepetitions = NumRepetitions;
  InstrBenchmark.Info = Configuration.Info;

  const std::vector<llvm::MCInst> &Snippet = Configuration.Snippet;
  if (Snippet.empty()) {
    InstrBenchmark.Error = "Empty snippet";
    return InstrBenchmark;
  }

  InstrBenchmark.Key.Instructions = Snippet;

  // Repeat the snippet until there are at least NumInstructions in the
  // resulting code. The snippet is always repeated at least once.
  const auto GenerateInstructions = [&Configuration](
                                        const int MinInstructions) {
    std::vector<llvm::MCInst> Code = Configuration.Snippet;
    for (int I = 0; I < MinInstructions; ++I)
      Code.push_back(Configuration.Snippet[I % Configuration.Snippet.size()]);
    return Code;
  };

  // Assemble at least kMinInstructionsForSnippet instructions by repeating the
  // snippet for debug/analysis. This is so that the user clearly understands
  // that the inside instructions are repeated.
  constexpr const int kMinInstructionsForSnippet = 16;
  {
    auto ObjectFilePath =
        writeObjectFile(Configuration.SnippetSetup,
                        GenerateInstructions(kMinInstructionsForSnippet));
    if (llvm::Error E = ObjectFilePath.takeError()) {
      InstrBenchmark.Error = llvm::toString(std::move(E));
      return InstrBenchmark;
    }
    const ExecutableFunction EF(State.createTargetMachine(),
                                getObjectFromFile(*ObjectFilePath));
    const auto FnBytes = EF.getFunctionBytes();
    InstrBenchmark.AssembledSnippet.assign(FnBytes.begin(), FnBytes.end());
  }

  // Assemble NumRepetitions instructions repetitions of the snippet for
  // measurements.
  auto ObjectFilePath =
      writeObjectFile(Configuration.SnippetSetup,
                      GenerateInstructions(InstrBenchmark.NumRepetitions));
  if (llvm::Error E = ObjectFilePath.takeError()) {
    InstrBenchmark.Error = llvm::toString(std::move(E));
    return InstrBenchmark;
  }
  llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
               << *ObjectFilePath << "\n";
  const ExecutableFunction EF(State.createTargetMachine(),
                              getObjectFromFile(*ObjectFilePath));
  InstrBenchmark.Measurements = runMeasurements(EF, NumRepetitions);

  return InstrBenchmark;
}

llvm::Expected<std::vector<BenchmarkConfiguration>>
BenchmarkRunner::generateConfigurations(unsigned Opcode) const {
  if (auto E = generatePrototype(Opcode)) {
    SnippetPrototype &Prototype = E.get();
    // TODO: Generate as many configurations as needed here.
    BenchmarkConfiguration Configuration;
    Configuration.Info = Prototype.Explanation;
    for (InstructionInstance &II : Prototype.Snippet) {
      II.randomizeUnsetVariables();
      Configuration.Snippet.push_back(II.build());
    }
    Configuration.SnippetSetup.RegsToDef = computeRegsToDef(Prototype.Snippet);
    return std::vector<BenchmarkConfiguration>{Configuration};
  } else
    return E.takeError();
}

std::vector<unsigned> BenchmarkRunner::computeRegsToDef(
    const std::vector<InstructionInstance> &Snippet) const {
  // Collect all register uses and create an assignment for each of them.
  // Loop invariant: DefinedRegs[i] is true iif it has been set at least once
  // before the current instruction.
  llvm::BitVector DefinedRegs = RATC.emptyRegisters();
  std::vector<unsigned> RegsToDef;
  for (const InstructionInstance &II : Snippet) {
    // Returns the register that this Operand sets or uses, or 0 if this is not
    // a register.
    const auto GetOpReg = [&II](const Operand &Op) -> unsigned {
      if (Op.ImplicitReg) {
        return *Op.ImplicitReg;
      } else if (Op.IsExplicit && II.getValueFor(Op).isReg()) {
        return II.getValueFor(Op).getReg();
      }
      return 0;
    };
    // Collect used registers that have never been def'ed.
    for (const Operand &Op : II.Instr.Operands) {
      if (!Op.IsDef) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0 && !DefinedRegs.test(Reg)) {
          RegsToDef.push_back(Reg);
          DefinedRegs.set(Reg);
        }
      }
    }
    // Mark defs as having been def'ed.
    for (const Operand &Op : II.Instr.Operands) {
      if (Op.IsDef) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0) {
          DefinedRegs.set(Reg);
        }
      }
    }
  }
  return RegsToDef;
}

llvm::Expected<std::string>
BenchmarkRunner::writeObjectFile(const BenchmarkConfiguration::Setup &Setup,
                                 llvm::ArrayRef<llvm::MCInst> Code) const {
  int ResultFD = 0;
  llvm::SmallString<256> ResultPath;
  if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
          "snippet", "o", ResultFD, ResultPath)))
    return std::move(E);
  llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
  assembleToStream(State.getExegesisTarget(), State.createTargetMachine(),
                   Setup.RegsToDef, Code, OFS);
  return ResultPath.str();
}

llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateSelfAliasingPrototype(const Instruction &Instr) const {
  const AliasingConfigurations SelfAliasing(Instr, Instr);
  if (SelfAliasing.empty()) {
    return llvm::make_error<BenchmarkFailure>("empty self aliasing");
  }
  SnippetPrototype Prototype;
  InstructionInstance II(Instr);
  if (SelfAliasing.hasImplicitAliasing()) {
    Prototype.Explanation = "implicit Self cycles, picking random values.";
  } else {
    Prototype.Explanation =
        "explicit self cycles, selecting one aliasing Conf.";
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice II in the following call.
    setRandomAliasing(SelfAliasing, II, II);
  }
  Prototype.Snippet.push_back(std::move(II));
  return std::move(Prototype);
}

llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateUnconstrainedPrototype(const Instruction &Instr,
                                                llvm::StringRef Msg) const {
  SnippetPrototype Prototype;
  Prototype.Explanation =
      llvm::formatv("{0}, repeating an unconstrained assignment", Msg);
  Prototype.Snippet.emplace_back(Instr);
  return std::move(Prototype);
}
} // namespace exegesis
OpenPOWER on IntegriCloud