summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-exegesis/lib/Analysis.cpp
blob: 0a91679fe1d1c94a2f6b952bfc393f8b08385391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Analysis.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>

namespace llvm {
namespace exegesis {

static const char kCsvSep = ',';

static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
                                    unsigned SchedClassId,
                                    const llvm::MCInst &MCI) {
  const auto &SM = STI.getSchedModel();
  while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
    SchedClassId =
        STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
  return SchedClassId;
}

namespace {

enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };

template <EscapeTag Tag>
void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);

template <>
void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
  if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
    OS << S;
  } else {
    // Needs escaping.
    OS << '"';
    for (const char C : S) {
      if (C == '"')
        OS << "\"\"";
      else
        OS << C;
    }
    OS << '"';
  }
}

template <>
void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
  for (const char C : S) {
    if (C == '<')
      OS << "&lt;";
    else if (C == '>')
      OS << "&gt;";
    else if (C == '&')
      OS << "&amp;";
    else
      OS << C;
  }
}

template <>
void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
                                     const llvm::StringRef S) {
  for (const char C : S) {
    if (C == '"')
      OS << "\\\"";
    else
      OS << C;
  }
}

} // namespace

template <EscapeTag Tag>
static void
writeClusterId(llvm::raw_ostream &OS,
               const InstructionBenchmarkClustering::ClusterId &CID) {
  if (CID.isNoise())
    writeEscaped<Tag>(OS, "[noise]");
  else if (CID.isError())
    writeEscaped<Tag>(OS, "[error]");
  else
    OS << CID.getId();
}

template <EscapeTag Tag>
static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
  // Given Value, if we wanted to serialize it to a string,
  // how many base-10 digits will we need to store, max?
  static constexpr auto MaxDigitCount =
      std::numeric_limits<decltype(Value)>::max_digits10;
  // Also, we will need a decimal separator.
  static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
  // So how long of a string will the serialization produce, max?
  static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;

  // WARNING: when changing the format, also adjust the small-size estimate ^.
  static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");

  writeEscaped<Tag>(
      OS,
      llvm::formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
}

template <typename EscapeTag, EscapeTag Tag>
void Analysis::writeSnippet(llvm::raw_ostream &OS,
                            llvm::ArrayRef<uint8_t> Bytes,
                            const char *Separator) const {
  llvm::SmallVector<std::string, 3> Lines;
  // Parse the asm snippet and print it.
  while (!Bytes.empty()) {
    llvm::MCInst MI;
    uint64_t MISize = 0;
    if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
                                 llvm::nulls())) {
      writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
      writeEscaped<Tag>(OS, Separator);
      writeEscaped<Tag>(OS, "[error decoding asm snippet]");
      return;
    }
    llvm::SmallString<128> InstPrinterStr; // FIXME: magic number.
    llvm::raw_svector_ostream OSS(InstPrinterStr);
    InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
    Bytes = Bytes.drop_front(MISize);
    Lines.emplace_back(llvm::StringRef(InstPrinterStr).trim());
  }
  writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
}

// Prints a row representing an instruction, along with scheduling info and
// point coordinates (measurements).
void Analysis::printInstructionRowCsv(const size_t PointId,
                                      llvm::raw_ostream &OS) const {
  const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
  writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
  OS << kCsvSep;
  writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
  OS << kCsvSep;
  writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
  OS << kCsvSep;
  assert(!Point.Key.Instructions.empty());
  const llvm::MCInst &MCI = Point.Key.Instructions[0];
  const unsigned SchedClassId = resolveSchedClassId(
      *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  const llvm::MCSchedClassDesc *const SCDesc =
      SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
  writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
#else
  OS << SchedClassId;
#endif
  for (const auto &Measurement : Point.Measurements) {
    OS << kCsvSep;
    writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
  }
  OS << "\n";
}

Analysis::Analysis(const llvm::Target &Target,
                   const InstructionBenchmarkClustering &Clustering)
    : Clustering_(Clustering) {
  if (Clustering.getPoints().empty())
    return;

  const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
  InstrInfo_.reset(Target.createMCInstrInfo());
  RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
  AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
  SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
                                                    FirstPoint.CpuName, ""));
  InstPrinter_.reset(Target.createMCInstPrinter(
      llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
      *InstrInfo_, *RegInfo_));

  Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
                                                &ObjectFileInfo_);
  Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
  assert(Disasm_ && "cannot create MCDisassembler. missing call to "
                    "InitializeXXXTargetDisassembler ?");
}

template <>
llvm::Error
Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
  if (Clustering_.getPoints().empty())
    return llvm::Error::success();

  // Write the header.
  OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
     << kCsvSep << "sched_class";
  for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
    OS << kCsvSep;
    writeEscaped<kEscapeCsv>(OS, Measurement.Key);
  }
  OS << "\n";

  // Write the points.
  const auto &Clusters = Clustering_.getValidClusters();
  for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
    for (const size_t PointId : Clusters[I].PointIndices) {
      printInstructionRowCsv(PointId, OS);
    }
    OS << "\n\n";
  }
  return llvm::Error::success();
}

Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
    ResolvedSchedClass &&RSC)
    : RSC(std::move(RSC)) {}

std::vector<Analysis::ResolvedSchedClassAndPoints>
Analysis::makePointsPerSchedClass() const {
  std::vector<ResolvedSchedClassAndPoints> Entries;
  // Maps SchedClassIds to index in result.
  std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
  const auto &Points = Clustering_.getPoints();
  for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
    const InstructionBenchmark &Point = Points[PointId];
    if (!Point.Error.empty())
      continue;
    assert(!Point.Key.Instructions.empty());
    // FIXME: we should be using the tuple of classes for instructions in the
    // snippet as key.
    const llvm::MCInst &MCI = Point.Key.Instructions[0];
    unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
    const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
                                                .getSchedClassDesc(SchedClassId)
                                                ->isVariant();
    SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
    const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
    if (IndexIt == SchedClassIdToIndex.end()) {
      // Create a new entry.
      SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
      ResolvedSchedClassAndPoints Entry(
          ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
      Entry.PointIds.push_back(PointId);
      Entries.push_back(std::move(Entry));
    } else {
      // Append to the existing entry.
      Entries[IndexIt->second].PointIds.push_back(PointId);
    }
  }
  return Entries;
}

// Uops repeat the same opcode over again. Just show this opcode and show the
// whole snippet only on hover.
static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
                                 const std::vector<llvm::MCInst> &Instructions,
                                 const llvm::MCInstrInfo &InstrInfo) {
  if (Instructions.empty())
    return;
  writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
  if (Instructions.size() > 1)
    OS << " (x" << Instructions.size() << ")";
}

// Latency tries to find a serial path. Just show the opcode path and show the
// whole snippet only on hover.
static void
writeLatencySnippetHtml(llvm::raw_ostream &OS,
                        const std::vector<llvm::MCInst> &Instructions,
                        const llvm::MCInstrInfo &InstrInfo) {
  bool First = true;
  for (const llvm::MCInst &Instr : Instructions) {
    if (First)
      First = false;
    else
      OS << " &rarr; ";
    writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
  }
}

void Analysis::printSchedClassClustersHtml(
    const std::vector<SchedClassCluster> &Clusters,
    const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const {
  const auto &Points = Clustering_.getPoints();
  OS << "<table class=\"sched-class-clusters\">";
  OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
  assert(!Clusters.empty());
  for (const auto &Measurement :
       Points[Clusters[0].getPointIds()[0]].Measurements) {
    OS << "<th>";
    writeEscaped<kEscapeHtml>(OS, Measurement.Key);
    OS << "</th>";
  }
  OS << "</tr>";
  for (const SchedClassCluster &Cluster : Clusters) {
    OS << "<tr class=\""
       << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_)
               ? "good-cluster"
               : "bad-cluster")
       << "\"><td>";
    writeClusterId<kEscapeHtml>(OS, Cluster.id());
    OS << "</td><td><ul>";
    for (const size_t PointId : Cluster.getPointIds()) {
      const auto &Point = Points[PointId];
      OS << "<li><span class=\"mono\" title=\"";
      writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
                                                 "\n");
      OS << "\">";
      switch (Point.Mode) {
      case InstructionBenchmark::Latency:
        writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
        break;
      case InstructionBenchmark::Uops:
        writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
        break;
      default:
        llvm_unreachable("invalid mode");
      }
      OS << "</span> <span class=\"mono\">";
      writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
      OS << "</span></li>";
    }
    OS << "</ul></td>";
    for (const auto &Stats : Cluster.getRepresentative()) {
      OS << "<td class=\"measurement\">";
      writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
      OS << "<br><span class=\"minmax\">[";
      writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
      OS << ";";
      writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
      OS << "]</span></td>";
    }
    OS << "</tr>";
  }
  OS << "</table>";
}

// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
//            P0      P06    P016
//     uOp1    1      (1)     (1)
//     uOp2            1      (1)
//     uOp3            1      (1)
//     =============================
//             1       3       3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
//    {ProcResIdx=1,  Cycles=1}  // P0
//    {ProcResIdx=7,  Cycles=3}  // P06
//    {ProcResIdx=10, Cycles=3}  // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
                            const llvm::MCSubtargetInfo &STI) {
  llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
  const auto &SM = STI.getSchedModel();
  const unsigned NumProcRes = SM.getNumProcResourceKinds();

  // This assumes that the ProcResDescs are sorted in topological order, which
  // is guaranteed by the tablegen backend.
  llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
  for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
                  *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
       WPR != WPREnd; ++WPR) {
    const llvm::MCProcResourceDesc *const ProcResDesc =
        SM.getProcResource(WPR->ProcResourceIdx);
    if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
      // This is a ProcResUnit.
      Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
      ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
    } else {
      // This is a ProcResGroup. First see if it contributes any cycles or if
      // it has cycles just from subunits.
      float RemainingCycles = WPR->Cycles;
      for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
           SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
           ++SubResIdx) {
        RemainingCycles -= ProcResUnitUsage[*SubResIdx];
      }
      if (RemainingCycles < 0.01f) {
        // The ProcResGroup contributes no cycles of its own.
        continue;
      }
      // The ProcResGroup contributes `RemainingCycles` cycles of its own.
      Result.push_back({WPR->ProcResourceIdx,
                        static_cast<uint16_t>(std::round(RemainingCycles))});
      // Spread the remaining cycles over all subunits.
      for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
           SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
           ++SubResIdx) {
        ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
      }
    }
  }
  return Result;
}

Analysis::ResolvedSchedClass::ResolvedSchedClass(
    const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
    bool WasVariant)
    : SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
      WasVariant(WasVariant),
      NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
      IdealizedProcResPressure(computeIdealizedProcResPressure(
          STI.getSchedModel(), NonRedundantWriteProcRes)) {
  assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
         "ResolvedSchedClass should never be variant");
}

void Analysis::SchedClassCluster::addPoint(
    size_t PointId, const InstructionBenchmarkClustering &Clustering) {
  PointIds.push_back(PointId);
  const auto &Point = Clustering.getPoints()[PointId];
  if (ClusterId.isUndef()) {
    ClusterId = Clustering.getClusterIdForPoint(PointId);
    Representative.resize(Point.Measurements.size());
  }
  for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
    Representative[I].push(Point.Measurements[I]);
  }
  assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
}

// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI,
                               const llvm::StringRef NameOrId) {
  // Interpret the key as an ProcResIdx.
  unsigned ProcResIdx = 0;
  if (llvm::to_integer(NameOrId, ProcResIdx, 10))
    return ProcResIdx;
  // Interpret the key as a ProcRes name.
  const auto &SchedModel = STI.getSchedModel();
  for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
    if (NameOrId == SchedModel.getProcResource(I)->Name)
      return I;
  }
  return 0;
}

bool Analysis::SchedClassCluster::measurementsMatch(
    const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
    const InstructionBenchmarkClustering &Clustering) const {
  const size_t NumMeasurements = Representative.size();
  std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
  std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
  // Latency case.
  assert(!Clustering.getPoints().empty());
  const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
  if (Mode == InstructionBenchmark::Latency) {
    if (NumMeasurements != 1) {
      llvm::errs()
          << "invalid number of measurements in latency mode: expected 1, got "
          << NumMeasurements << "\n";
      return false;
    }
    // Find the latency.
    SchedClassPoint[0].PerInstructionValue = 0.0;
    for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) {
      const llvm::MCWriteLatencyEntry *const WLE =
          STI.getWriteLatencyEntry(RSC.SCDesc, I);
      SchedClassPoint[0].PerInstructionValue =
          std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
    }
    ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
  } else if (Mode == InstructionBenchmark::Uops) {
    for (int I = 0, E = Representative.size(); I < E; ++I) {
      const auto Key = Representative[I].key();
      uint16_t ProcResIdx = findProcResIdx(STI, Key);
      if (ProcResIdx > 0) {
        // Find the pressure on ProcResIdx `Key`.
        const auto ProcResPressureIt =
            std::find_if(RSC.IdealizedProcResPressure.begin(),
                         RSC.IdealizedProcResPressure.end(),
                         [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
                           return WPR.first == ProcResIdx;
                         });
        SchedClassPoint[I].PerInstructionValue =
            ProcResPressureIt == RSC.IdealizedProcResPressure.end()
                ? 0.0
                : ProcResPressureIt->second;
      } else if (Key == "NumMicroOps") {
        SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps;
      } else {
        llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
                        "name, got "
                     << Key << "\n";
        return false;
      }
      ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
    }
  } else {
    llvm::errs() << "unimplemented measurement matching for mode " << Mode
                 << "\n";
    return false;
  }
  return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
}

void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
                                       llvm::raw_ostream &OS) const {
  OS << "<table class=\"sched-class-desc\">";
  OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
        "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
        "resource (port) pressure assuming ideal distribution\">Idealized "
        "Resource Pressure</th></tr>";
  if (RSC.SCDesc->isValid()) {
    const auto &SM = SubtargetInfo_->getSchedModel();
    OS << "<tr><td>&#10004;</td>";
    OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
    OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
    // Latencies.
    OS << "<td><ul>";
    for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
      const auto *const Entry =
          SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
      OS << "<li>" << Entry->Cycles;
      if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
        // Dismabiguate if more than 1 latency.
        OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
      }
      OS << "</li>";
    }
    OS << "</ul></td>";
    // WriteProcRes.
    OS << "<td><ul>";
    for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
      OS << "<li><span class=\"mono\">";
      writeEscaped<kEscapeHtml>(OS,
                                SM.getProcResource(WPR.ProcResourceIdx)->Name);
      OS << "</span>: " << WPR.Cycles << "</li>";
    }
    OS << "</ul></td>";
    // Idealized port pressure.
    OS << "<td><ul>";
    for (const auto &Pressure : RSC.IdealizedProcResPressure) {
      OS << "<li><span class=\"mono\">";
      writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
                                        .getProcResource(Pressure.first)
                                        ->Name);
      OS << "</span>: ";
      writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
      OS << "</li>";
    }
    OS << "</ul></td>";
    OS << "</tr>";
  } else {
    OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
  }
  OS << "</table>";
}

static constexpr const char kHtmlHead[] = R"(
<head>
<title>llvm-exegesis Analysis Results</title>
<style>
body {
  font-family: sans-serif
}
span.sched-class-name {
  font-weight: bold;
  font-family: monospace;
}
span.opcode {
  font-family: monospace;
}
span.config {
  font-family: monospace;
}
div.inconsistency {
  margin-top: 50px;
}
table {
  margin-left: 50px;
  border-collapse: collapse;
}
table, table tr,td,th {
  border: 1px solid #444;
}
table ul {
  padding-left: 0px;
  margin: 0px;
  list-style-type: none;
}
table.sched-class-clusters td {
  padding-left: 10px;
  padding-right: 10px;
  padding-top: 10px;
  padding-bottom: 10px;
}
table.sched-class-desc td {
  padding-left: 10px;
  padding-right: 10px;
  padding-top: 2px;
  padding-bottom: 2px;
}
span.mono {
  font-family: monospace;
}
td.measurement {
  text-align: center;
}
tr.good-cluster td.measurement {
  color: #292
}
tr.bad-cluster td.measurement {
  color: #922
}
tr.good-cluster td.measurement span.minmax {
  color: #888;
}
tr.bad-cluster td.measurement span.minmax {
  color: #888;
}
</style>
</head>
)";

template <>
llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
    llvm::raw_ostream &OS) const {
  const auto &FirstPoint = Clustering_.getPoints()[0];
  // Print the header.
  OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
  OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
  OS << "<h3>Triple: <span class=\"mono\">";
  writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
  OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
  writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
  OS << "</span></h3>";

  for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
    if (!RSCAndPoints.RSC.SCDesc)
      continue;
    // Bucket sched class points into sched class clusters.
    std::vector<SchedClassCluster> SchedClassClusters;
    for (const size_t PointId : RSCAndPoints.PointIds) {
      const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
      if (!ClusterId.isValid())
        continue; // Ignore noise and errors. FIXME: take noise into account ?
      auto SchedClassClusterIt =
          std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
                       [ClusterId](const SchedClassCluster &C) {
                         return C.id() == ClusterId;
                       });
      if (SchedClassClusterIt == SchedClassClusters.end()) {
        SchedClassClusters.emplace_back();
        SchedClassClusterIt = std::prev(SchedClassClusters.end());
      }
      SchedClassClusterIt->addPoint(PointId, Clustering_);
    }

    // Print any scheduling class that has at least one cluster that does not
    // match the checked-in data.
    if (llvm::all_of(SchedClassClusters,
                     [this, &RSCAndPoints](const SchedClassCluster &C) {
                       return C.measurementsMatch(
                           *SubtargetInfo_, RSCAndPoints.RSC, Clustering_);
                     }))
      continue; // Nothing weird.

    OS << "<div class=\"inconsistency\"><p>Sched Class <span "
          "class=\"sched-class-name\">";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
#else
    OS << RSCAndPoints.RSC.SchedClassId;
#endif
    OS << "</span> contains instructions whose performance characteristics do"
          " not match that of LLVM:</p>";
    printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
    OS << "<p>llvm SchedModel data:</p>";
    printSchedClassDescHtml(RSCAndPoints.RSC, OS);
    OS << "</div>";
  }

  OS << "</body></html>";
  return llvm::Error::success();
}

// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
//     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
//                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
//     RemainingPressure = 2.0
// We sort the subunits by pressure:
//     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
//     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
//     RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
//     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
//     RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
//     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
//     RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
void distributePressure(float RemainingPressure,
                        llvm::SmallVector<uint16_t, 32> Subunits,
                        llvm::SmallVector<float, 32> &DensePressure) {
  // Find the number of subunits with minimal pressure (they are at the
  // front).
  llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
    return DensePressure[A] < DensePressure[B];
  });
  const auto getPressureForSubunit = [&DensePressure,
                                      &Subunits](size_t I) -> float & {
    return DensePressure[Subunits[I]];
  };
  size_t NumMinimalSU = 1;
  while (NumMinimalSU < Subunits.size() &&
         getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
    ++NumMinimalSU;
  }
  while (RemainingPressure > 0.0f) {
    if (NumMinimalSU == Subunits.size()) {
      // All units are minimal, just distribute evenly and be done.
      for (size_t I = 0; I < NumMinimalSU; ++I) {
        getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
      }
      return;
    }
    // Distribute the remaining pressure equally.
    const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
    const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
    assert(MinimalPressure < SecondToMinimalPressure);
    const float Increment = SecondToMinimalPressure - MinimalPressure;
    if (RemainingPressure <= NumMinimalSU * Increment) {
      // There is not enough remaining pressure.
      for (size_t I = 0; I < NumMinimalSU; ++I) {
        getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
      }
      return;
    }
    // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
    for (size_t I = 0; I < NumMinimalSU; ++I) {
      getPressureForSubunit(I) = SecondToMinimalPressure;
      RemainingPressure -= SecondToMinimalPressure;
    }
    while (NumMinimalSU < Subunits.size() &&
           getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
      ++NumMinimalSU;
    }
  }
}

std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
    const llvm::MCSchedModel &SM,
    llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
  // DensePressure[I] is the port pressure for Proc Resource I.
  llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
  llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
                      const llvm::MCWriteProcResEntry &B) {
    return A.ProcResourceIdx < B.ProcResourceIdx;
  });
  for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
    // Get units for the entry.
    const llvm::MCProcResourceDesc *const ProcResDesc =
        SM.getProcResource(WPR.ProcResourceIdx);
    if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
      // This is a ProcResUnit.
      DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
    } else {
      // This is a ProcResGroup.
      llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
                                               ProcResDesc->SubUnitsIdxBegin +
                                                   ProcResDesc->NumUnits);
      distributePressure(WPR.Cycles, Subunits, DensePressure);
    }
  }
  // Turn dense pressure into sparse pressure by removing zero entries.
  std::vector<std::pair<uint16_t, float>> Pressure;
  for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
    if (DensePressure[I] > 0.0f)
      Pressure.emplace_back(I, DensePressure[I]);
  }
  return Pressure;
}

} // namespace exegesis
} // namespace llvm
OpenPOWER on IntegriCloud