1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Analysis.h"
#include "BenchmarkResult.h"
#include "llvm/Support/FormatVariadic.h"
#include <unordered_set>
#include <vector>
namespace exegesis {
static const char kCsvSep = ',';
namespace {
enum EscapeTag { kEscapeCsv, kEscapeHtml };
template <EscapeTag Tag>
void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
template <>
void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
OS << S;
} else {
// Needs escaping.
OS << '"';
for (const char C : S) {
if (C == '"')
OS << "\"\"";
else
OS << C;
}
OS << '"';
}
}
template <>
void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
for (const char C : S) {
if (C == '<')
OS << "<";
else if (C == '>')
OS << ">";
else if (C == '&')
OS << "&";
else
OS << C;
}
}
} // namespace
template <EscapeTag Tag>
static void
writeClusterId(llvm::raw_ostream &OS,
const InstructionBenchmarkClustering::ClusterId &CID) {
if (CID.isNoise())
writeEscaped<Tag>(OS, "[noise]");
else if (CID.isError())
writeEscaped<Tag>(OS, "[error]");
else
OS << CID.getId();
}
template <EscapeTag Tag>
static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str());
}
// Prints a row representing an instruction, along with scheduling info and
// point coordinates (measurements).
void Analysis::printInstructionRowCsv(const size_t PointId,
llvm::raw_ostream &OS) const {
const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Point.Key.OpcodeName);
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
OS << kCsvSep;
const auto OpcodeIt = MnemonicToOpcode_.find(Point.Key.OpcodeName);
if (OpcodeIt != MnemonicToOpcode_.end()) {
const unsigned SchedClassId =
InstrInfo_->get(OpcodeIt->second).getSchedClass();
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
const auto &SchedModel = SubtargetInfo_->getSchedModel();
const llvm::MCSchedClassDesc *const SCDesc =
SchedModel.getSchedClassDesc(SchedClassId);
writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
#else
OS << SchedClassId;
#endif
}
// FIXME: Print the sched class once InstructionBenchmark separates key into
// (mnemonic, mode, opaque).
for (const auto &Measurement : Point.Measurements) {
OS << kCsvSep;
writeMeasurementValue<kEscapeCsv>(OS, Measurement.Value);
}
OS << "\n";
}
Analysis::Analysis(const llvm::Target &Target,
const InstructionBenchmarkClustering &Clustering)
: Clustering_(Clustering) {
if (Clustering.getPoints().empty())
return;
InstrInfo_.reset(Target.createMCInstrInfo());
const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
FirstPoint.CpuName, ""));
// Build an index of mnemonic->opcode.
for (int I = 0, E = InstrInfo_->getNumOpcodes(); I < E; ++I)
MnemonicToOpcode_.emplace(InstrInfo_->getName(I), I);
}
template <>
llvm::Error
Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
if (Clustering_.getPoints().empty())
return llvm::Error::success();
// Write the header.
OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
<< kCsvSep << "sched_class";
for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Measurement.Key);
}
OS << "\n";
// Write the points.
const auto &Clusters = Clustering_.getValidClusters();
for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
for (const size_t PointId : Clusters[I].PointIndices) {
printInstructionRowCsv(PointId, OS);
}
OS << "\n\n";
}
return llvm::Error::success();
}
std::unordered_map<unsigned, std::vector<size_t>>
Analysis::makePointsPerSchedClass() const {
std::unordered_map<unsigned, std::vector<size_t>> PointsPerSchedClass;
const auto &Points = Clustering_.getPoints();
for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
const InstructionBenchmark &Point = Points[PointId];
if (!Point.Error.empty())
continue;
const auto OpcodeIt = MnemonicToOpcode_.find(Point.Key.OpcodeName);
if (OpcodeIt == MnemonicToOpcode_.end())
continue;
const unsigned SchedClassId =
InstrInfo_->get(OpcodeIt->second).getSchedClass();
PointsPerSchedClass[SchedClassId].push_back(PointId);
}
return PointsPerSchedClass;
}
void Analysis::printSchedClassClustersHtml(std::vector<size_t> PointIds,
llvm::raw_ostream &OS) const {
assert(!PointIds.empty());
// Sort the points by cluster id so that we can display them grouped by
// cluster.
std::sort(PointIds.begin(), PointIds.end(),
[this](const size_t A, const size_t B) {
return Clustering_.getClusterIdForPoint(A) <
Clustering_.getClusterIdForPoint(B);
});
const auto &Points = Clustering_.getPoints();
OS << "<table class=\"sched-class-clusters\">";
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
for (const auto &Measurement : Points[PointIds[0]].Measurements) {
OS << "<th>";
if (Measurement.DebugString.empty())
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
else
writeEscaped<kEscapeHtml>(OS, Measurement.DebugString);
OS << "</th>";
}
OS << "</tr>";
for (size_t I = 0, E = PointIds.size(); I < E;) {
const auto &CurrentClusterId =
Clustering_.getClusterIdForPoint(PointIds[I]);
OS << "<tr><td>";
writeClusterId<kEscapeHtml>(OS, CurrentClusterId);
OS << "</td><td><ul>";
std::vector<BenchmarkMeasureStats> MeasurementStats(
Points[PointIds[I]].Measurements.size());
for (; I < E &&
Clustering_.getClusterIdForPoint(PointIds[I]) == CurrentClusterId;
++I) {
const auto &Point = Points[PointIds[I]];
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Point.Key.OpcodeName);
OS << "</span> <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
OS << "</span></li>";
for (size_t J = 0, F = Point.Measurements.size(); J < F; ++J) {
MeasurementStats[J].push(Point.Measurements[J]);
}
}
OS << "</ul></td>";
for (const auto &Stats : MeasurementStats) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
OS << "<br><span class=\"minmax\">[";
writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
OS << ";";
writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
OS << "]</span></td>";
}
OS << "</tr>";
}
OS << "</table>";
}
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
const llvm::MCSubtargetInfo &STI) {
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
void Analysis::printSchedClassDescHtml(const llvm::MCSchedClassDesc &SCDesc,
llvm::raw_ostream &OS) const {
OS << "<table class=\"sched-class-desc\">";
OS << "<tr><th>Valid</th><th>Variant</th><th>uOps</th><th>Latency</"
"th><th>WriteProcRes</th></tr>";
if (SCDesc.isValid()) {
OS << "<tr><td>✔</td>";
OS << "<td>" << (SCDesc.isVariant() ? "✔" : "✕") << "</td>";
OS << "<td>" << SCDesc.NumMicroOps << "</td>";
// Latencies.
OS << "<td><ul>";
for (int I = 0, E = SCDesc.NumWriteLatencyEntries; I < E; ++I) {
const auto *const Entry =
SubtargetInfo_->getWriteLatencyEntry(&SCDesc, I);
OS << "<li>" << Entry->Cycles;
if (SCDesc.NumWriteLatencyEntries > 1) {
// Dismabiguate if more than 1 latency.
OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
}
OS << "</li>";
}
OS << "</ul></td>";
// WriteProcRes.
OS << "<td><ul>";
for (const auto &WPR :
getNonRedundantWriteProcRes(SCDesc, *SubtargetInfo_)) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
.getProcResource(WPR.ProcResourceIdx)
->Name);
OS << "</span>: " << WPR.Cycles << "</li>";
}
OS << "</ul></td>";
OS << "</tr>";
} else {
OS << "<tr><td>✕</td><td></td><td></td></tr>";
}
OS << "</table>";
}
static constexpr const char kHtmlHead[] = R"(
<head>
<title>llvm-exegesis Analysis Results</title>
<style>
body {
font-family: sans-serif
}
span.sched-class-name {
font-weight: bold;
font-family: monospace;
}
span.opcode {
font-family: monospace;
}
span.config {
font-family: monospace;
}
div.inconsistency {
margin-top: 50px;
}
table {
margin-left: 50px;
border-collapse: collapse;
}
table, table tr,td,th {
border: 1px solid #444;
}
table ul {
padding-left: 0px;
margin: 0px;
list-style-type: none;
}
table.sched-class-clusters td {
padding-left: 10px;
padding-right: 10px;
padding-top: 10px;
padding-bottom: 10px;
}
table.sched-class-desc td {
padding-left: 10px;
padding-right: 10px;
padding-top: 2px;
padding-bottom: 2px;
}
span.mono {
font-family: monospace;
}
span.minmax {
color: #888;
}
td.measurement {
text-align: center;
}
</style>
</head>
)";
template <>
llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
llvm::raw_ostream &OS) const {
// Print the header.
OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
OS << "<h3>Triple: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Clustering_.getPoints()[0].LLVMTriple);
OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Clustering_.getPoints()[0].CpuName);
OS << "</span></h3>";
// All the points in a scheduling class should be in the same cluster.
// Print any scheduling class for which this is not the case.
for (const auto &SchedClassAndPoints : makePointsPerSchedClass()) {
std::unordered_set<size_t> ClustersForSchedClass;
for (const size_t PointId : SchedClassAndPoints.second) {
const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
if (!ClusterId.isValid())
continue; // Ignore noise and errors.
ClustersForSchedClass.insert(ClusterId.getId());
}
if (ClustersForSchedClass.size() <= 1)
continue; // Nothing weird.
const auto &SchedModel = SubtargetInfo_->getSchedModel();
const llvm::MCSchedClassDesc *const SCDesc =
SchedModel.getSchedClassDesc(SchedClassAndPoints.first);
if (!SCDesc)
continue;
OS << "<div class=\"inconsistency\"><p>Sched Class <span "
"class=\"sched-class-name\">";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
writeEscaped<kEscapeHtml>(OS, SCDesc->Name);
#else
OS << SchedClassAndPoints.first;
#endif
OS << "</span> contains instructions with distinct performance "
"characteristics, falling into "
<< ClustersForSchedClass.size() << " clusters:</p>";
printSchedClassClustersHtml(SchedClassAndPoints.second, OS);
OS << "<p>llvm data:</p>";
printSchedClassDescHtml(*SCDesc, OS);
OS << "</div>";
}
OS << "</body></html>";
return llvm::Error::success();
}
} // namespace exegesis
|