1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; Make sure that we can handle multiple integer induction variables.
; CHECK-LABEL: @multi_int_induction(
; CHECK: vector.body:
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %[[VAR:.*]] = trunc i64 %index to i32
; CHECK: %offset.idx = add i32 190, %[[VAR]]
define void @multi_int_induction(i32* %A, i32 %N) {
for.body.lr.ph:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
%arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
store i32 %count.09, i32* %arrayidx2, align 4
%inc = add nsw i32 %count.09, 1
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %N
br i1 %exitcond, label %for.body, label %for.end
for.end:
ret void
}
; Make sure we remove unneeded vectorization of induction variables.
; In order for instcombine to cleanup the vectorized induction variables that we
; create in the loop vectorizer we need to perform some form of redundancy
; elimination to get rid of multiple uses.
; IND-LABEL: scalar_use
; IND: br label %vector.body
; IND: vector.body:
; Vectorized induction variable.
; IND-NOT: insertelement <2 x i64>
; IND-NOT: shufflevector <2 x i64>
; IND: br {{.*}}, label %vector.body
define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%ind.sum = add i64 %iv, %offset
%arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
%l1 = load float, float* %arr.idx, align 4
%ind.sum2 = add i64 %iv, %offset2
%arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
%l2 = load float, float* %arr.idx2, align 4
%m = fmul fast float %b, %l2
%ad = fadd fast float %l1, %m
store float %ad, float* %arr.idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %n
br i1 %exitcond, label %loopexit, label %for.body
loopexit:
ret void
}
; Make sure that the loop exit count computation does not overflow for i8 and
; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
; induction variable to a bigger type the exit count computation will overflow
; to 0.
; PR17532
; CHECK-LABEL: i8_loop
; CHECK: icmp eq i32 {{.*}}, 256
define i32 @i8_loop() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i8 %b.0, -1
%4 = icmp eq i8 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; CHECK-LABEL: i16_loop
; CHECK: icmp eq i32 {{.*}}, 65536
define i32 @i16_loop() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i16 %b.0, -1
%4 = icmp eq i16 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; This loop has a backedge taken count of i32_max. We need to check for this
; condition and branch directly to the scalar loop.
; CHECK-LABEL: max_i32_backedgetaken
; CHECK: br i1 true, label %scalar.ph, label %min.iters.checked
; CHECK: scalar.ph:
; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %0 ]
; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ 1, %min.iters.checked ], [ %5, %middle.block ]
define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i32 %b.0, -1
%4 = icmp eq i32 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; When generating the overflow check we must sure that the induction start value
; is defined before the branch to the scalar preheader.
; CHECK-LABEL: testoverflowcheck
; CHECK: entry
; CHECK: %[[LOAD:.*]] = load i8
; CHECK: br
; CHECK: scalar.ph
; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ]
@e = global i8 1, align 1
@d = common global i32 0, align 4
@c = common global i32 0, align 4
define i32 @testoverflowcheck() {
entry:
%.pr.i = load i8, i8* @e, align 1
%0 = load i32, i32* @d, align 4
%c.promoted.i = load i32, i32* @c, align 4
br label %cond.end.i
cond.end.i:
%inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
%and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
%and.i = and i32 %0, %and3.i
%inc.i = add i8 %inc4.i, 1
%tobool.i = icmp eq i8 %inc.i, 0
br i1 %tobool.i, label %loopexit, label %cond.end.i
loopexit:
ret i32 %and.i
}
; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32)
; In order to recognize %sphi as an induction PHI and vectorize this loop,
; we need to convert the SCEV expression into an AddRecExpr.
; The expression gets converted to {zext i8 %t to i32,+,1}.
; CHECK-LABEL: wrappingindvars1
; CHECK-LABEL: vector.scevcheck
; CHECK-LABEL: vector.ph
; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1>
; CHECK-LABEL: vector.body
; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2>
define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) {
entry:
%st = zext i8 %t to i16
%ext = zext i8 %t to i32
%ecmp = icmp ult i16 %st, 42
br i1 %ecmp, label %loop, label %exit
loop:
%idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
%idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
%sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop]
%ptr = getelementptr inbounds i32, i32* %A, i8 %idx
store i32 %sphi, i32* %ptr
%idx.inc = add i8 %idx, 1
%idx.inc.ext = zext i8 %idx.inc to i32
%idx.b.inc = add nuw nsw i32 %idx.b, 1
%c = icmp ult i32 %idx.b, %len
br i1 %c, label %loop, label %exit
exit:
ret void
}
; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32))
; In order to recognize %sphi as an induction PHI and vectorize this loop,
; we need to convert the SCEV expression into an AddRecExpr.
; The expression gets converted to ({4 * (zext %t to i32),+,4}).
; CHECK-LABEL: wrappingindvars2
; CHECK-LABEL: vector.scevcheck
; CHECK-LABEL: vector.ph
; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4>
; CHECK-LABEL: vector.body
; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8>
define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) {
entry:
%st = zext i8 %t to i16
%ext = zext i8 %t to i32
%ext.mul = mul i32 %ext, 4
%ecmp = icmp ult i16 %st, 42
br i1 %ecmp, label %loop, label %exit
loop:
%idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
%sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop]
%idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
%ptr = getelementptr inbounds i32, i32* %A, i8 %idx
store i32 %sphi, i32* %ptr
%idx.inc = add i8 %idx, 1
%idx.inc.ext = zext i8 %idx.inc to i32
%mul = mul i32 %idx.inc.ext, 4
%idx.b.inc = add nuw nsw i32 %idx.b, 1
%c = icmp ult i32 %idx.b, %len
br i1 %c, label %loop, label %exit
exit:
ret void
}
; Check that we generate vectorized IVs in the pre-header
; instead of widening the scalar IV inside the loop, when
; we know how to do that.
; IND-LABEL: veciv
; IND: vector.body:
; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add, %vector.body ]
; IND: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
; IND: %index.next = add i32 %index, 2
; IND: %[[CMP:.*]] = icmp eq i32 %index.next
; IND: br i1 %[[CMP]]
; UNROLL-LABEL: veciv
; UNROLL: vector.body:
; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add1, %vector.body ]
; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
; UNROLL: %step.add1 = add <2 x i32> %vec.ind, <i32 4, i32 4>
; UNROLL: %index.next = add i32 %index, 4
; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next
; UNROLL: br i1 %[[CMP]]
define void @veciv(i32* nocapture %a, i32 %start, i32 %k) {
for.body.preheader:
br label %for.body
for.body:
%indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
store i32 %indvars.iv, i32* %arrayidx, align 4
%indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
%exitcond = icmp eq i32 %indvars.iv.next, %k
br i1 %exitcond, label %exit, label %for.body
exit:
ret void
}
; IND-LABEL: trunciv
; IND: vector.body:
; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ]
; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2>
; IND: %index.next = add i64 %index, 2
; IND: %[[CMP:.*]] = icmp eq i64 %index.next
; IND: br i1 %[[CMP]]
define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) {
for.body.preheader:
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%trunc.iv = trunc i64 %indvars.iv to i32
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv
store i32 %trunc.iv, i32* %arrayidx, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %k
br i1 %exitcond, label %exit, label %for.body
exit:
ret void
}
; IND-LABEL: nonprimary
; IND-LABEL: vector.ph
; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 42>
; IND-LABEL: vector.body:
; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %step.add, %vector.body ]
; IND: %step.add = add <2 x i32> %vec.ind, <i32 84, i32 84>
; IND: %index.next = add i32 %index, 2
; IND: %[[CMP:.*]] = icmp eq i32 %index.next
; IND: br i1 %[[CMP]]
; UNROLL-LABEL: nonprimary
; UNROLL-LABEL: vector.ph
; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 42>
; UNROLL-LABEL: vector.body:
; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %step.add1, %vector.body ]
; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 84, i32 84>
; UNROLL: %step.add1 = add <2 x i32> %vec.ind, <i32 168, i32 168>
; UNROLL: %index.next = add i32 %index, 4
; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next
; UNROLL: br i1 %[[CMP]]
define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) {
for.body.preheader:
br label %for.body
for.body:
%indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
store i32 %indvars.iv, i32* %arrayidx, align 4
%indvars.iv.next = add nuw nsw i32 %indvars.iv, 42
%exitcond = icmp eq i32 %indvars.iv.next, %k
br i1 %exitcond, label %exit, label %for.body
exit:
ret void
}
|