1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
; RUN: opt < %s -instcombine -S | FileCheck %s
; Make sure all library calls are eliminated when the input is known positive.
declare float @fabsf(float)
declare double @fabs(double)
declare fp128 @fabsl(fp128)
define float @square_fabs_call_f32(float %x) {
%mul = fmul float %x, %x
%fabsf = tail call float @fabsf(float %mul)
ret float %fabsf
; CHECK-LABEL: square_fabs_call_f32(
; CHECK-NEXT: %mul = fmul float %x, %x
; CHECK-NEXT: ret float %mul
}
define double @square_fabs_call_f64(double %x) {
%mul = fmul double %x, %x
%fabs = tail call double @fabs(double %mul)
ret double %fabs
; CHECK-LABEL: square_fabs_call_f64(
; CHECK-NEXT: %mul = fmul double %x, %x
; CHECK-NEXT: ret double %mul
}
define fp128 @square_fabs_call_f128(fp128 %x) {
%mul = fmul fp128 %x, %x
%fabsl = tail call fp128 @fabsl(fp128 %mul)
ret fp128 %fabsl
; CHECK-LABEL: square_fabs_call_f128(
; CHECK-NEXT: %mul = fmul fp128 %x, %x
; CHECK-NEXT: ret fp128 %mul
}
; Make sure all intrinsic calls are eliminated when the input is known positive.
declare float @llvm.fabs.f32(float)
declare double @llvm.fabs.f64(double)
declare fp128 @llvm.fabs.f128(fp128)
declare <4 x float> @llvm.fabs.v4f32(<4 x float>)
define float @square_fabs_intrinsic_f32(float %x) {
%mul = fmul float %x, %x
%fabsf = tail call float @llvm.fabs.f32(float %mul)
ret float %fabsf
; CHECK-LABEL: square_fabs_intrinsic_f32(
; CHECK-NEXT: %mul = fmul float %x, %x
; CHECK-NEXT: ret float %mul
}
define double @square_fabs_intrinsic_f64(double %x) {
%mul = fmul double %x, %x
%fabs = tail call double @llvm.fabs.f64(double %mul)
ret double %fabs
; CHECK-LABEL: square_fabs_intrinsic_f64(
; CHECK-NEXT: %mul = fmul double %x, %x
; CHECK-NEXT: ret double %mul
}
define fp128 @square_fabs_intrinsic_f128(fp128 %x) {
%mul = fmul fp128 %x, %x
%fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul)
ret fp128 %fabsl
; CHECK-LABEL: square_fabs_intrinsic_f128(
; CHECK-NEXT: %mul = fmul fp128 %x, %x
; CHECK-NEXT: ret fp128 %mul
}
; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization.
define float @square_fabs_shrink_call1(float %x) {
%ext = fpext float %x to double
%sq = fmul double %ext, %ext
%fabs = call double @fabs(double %sq)
%trunc = fptrunc double %fabs to float
ret float %trunc
; CHECK-LABEL: square_fabs_shrink_call1(
; CHECK-NEXT: %trunc = fmul float %x, %x
; CHECK-NEXT: ret float %trunc
}
define float @square_fabs_shrink_call2(float %x) {
%sq = fmul float %x, %x
%ext = fpext float %sq to double
%fabs = call double @fabs(double %ext)
%trunc = fptrunc double %fabs to float
ret float %trunc
; CHECK-LABEL: square_fabs_shrink_call2(
; CHECK-NEXT: %sq = fmul float %x, %x
; CHECK-NEXT: ret float %sq
}
; A scalar fabs op makes the sign bit zero, so masking off all of the other bits means we can return zero.
define i32 @fabs_value_tracking_f32(float %x) {
%call = call float @llvm.fabs.f32(float %x)
%bc = bitcast float %call to i32
%and = and i32 %bc, 2147483648
ret i32 %and
; CHECK-LABEL: fabs_value_tracking_f32(
; CHECK: ret i32 0
}
; TODO: A vector fabs op makes the sign bits zero, so masking off all of the other bits means we can return zero.
define <4 x i32> @fabs_value_tracking_v4f32(<4 x float> %x) {
%call = call <4 x float> @llvm.fabs.v4f32(<4 x float> %x)
%bc = bitcast <4 x float> %call to <4 x i32>
%and = and <4 x i32> %bc, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648>
ret <4 x i32> %and
; CHECK-LABEL: fabs_value_tracking_v4f32(
; CHECK: ret <4 x i32> %and
}
|