1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
; RUN: llc -mtriple=i386-linux-gnu %s -o - | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK32
; RUN: llc -mtriple=x86_64-linux-gnu -mattr=+sahf %s -o - | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK64
; TODO: Reenable verify-machineinstrs once the if (!AXDead) // FIXME in
; X86InstrInfo::copyPhysReg() is resolved.
; The peephole optimizer can elide some physical register copies such as
; EFLAGS. Make sure the flags are used directly, instead of needlessly using
; lahf, when possible.
@L = external global i32
@M = external global i8
declare i32 @bar(i64)
; CHECK-LABEL: plus_one
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: incl L
define i1 @plus_one() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, 1 ; N.B. will emit inc.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: plus_forty_two
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: addl $42,
define i1 @plus_forty_two() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, 42 ; N.B. won't emit inc.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: minus_one
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: decl L
define i1 @minus_one() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, -1 ; N.B. will emit dec.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: minus_forty_two
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: addl $-42,
define i1 @minus_forty_two() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, -42 ; N.B. won't emit dec.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: test_intervening_call:
; CHECK: cmpxchg
; CHECK: seto %al
; CHECK-NEXT: lahf
; CHECK: call{{[lq]}} bar
; CHECK: addb $127, %al
; CHECK-NEXT: sahf
define i64 @test_intervening_call(i64* %foo, i64 %bar, i64 %baz) {
; cmpxchg sets EFLAGS, call clobbers it, then br uses EFLAGS.
%cx = cmpxchg i64* %foo, i64 %bar, i64 %baz seq_cst seq_cst
%v = extractvalue { i64, i1 } %cx, 0
%p = extractvalue { i64, i1 } %cx, 1
call i32 @bar(i64 %v)
br i1 %p, label %t, label %f
t:
ret i64 42
f:
ret i64 0
}
; CHECK-LABEL: test_two_live_flags:
; CHECK: cmpxchg
; CHECK: seto %al
; CHECK-NEXT: lahf
; Save result of the first cmpxchg into a temporary.
; For 32-bit ISA, EDX, EAX are used by the results.
; EAX, EBX, ECX, and EDX are used to set the arguments.
; That leaves us EDI and ESI.
; CHECK32-NEXT: movl %[[AX:eax]], %[[TMP:e[ds]i]]
; For 64-bit ISA, RAX is used for both the result and argument.
; This leaves us plenty of choices for the temporary. For now,
; this is rdx, but any register could do.
; CHECK64-NEXT: mov{{[lq]}} %[[AX:[er]ax]], %[[TMP:rdx]]
; CHECK: cmpxchg
; CHECK-NEXT: sete %al
; Save result of the second cmpxchg onto the stack.
; CHECK-NEXT: push{{[lq]}} %[[AX]]
; Restore result of the first cmpxchg from D, put it back in EFLAGS.
; CHECK-NEXT: mov{{[lq]}} %[[TMP]], %[[AX]]
; CHECK-NEXT: addb $127, %al
; CHECK-NEXT: sahf
; Restore result of the second cmpxchg from the stack.
; CHECK-NEXT: pop{{[lq]}} %[[AX]]
; Test from EFLAGS restored from first cmpxchg, jump if that fails.
; CHECK-NEXT: jne
; Fallthrough to test the second cmpxchg's result.
; CHECK: testb %al, %al
; CHECK-NEXT: je
define i64 @test_two_live_flags(
i64* %foo0, i64 %bar0, i64 %baz0,
i64* %foo1, i64 %bar1, i64 %baz1) {
%cx0 = cmpxchg i64* %foo0, i64 %bar0, i64 %baz0 seq_cst seq_cst
%p0 = extractvalue { i64, i1 } %cx0, 1
%cx1 = cmpxchg i64* %foo1, i64 %bar1, i64 %baz1 seq_cst seq_cst
%p1 = extractvalue { i64, i1 } %cx1, 1
%flag = and i1 %p0, %p1
br i1 %flag, label %t, label %f
t:
ret i64 42
f:
ret i64 0
}
; CHECK-LABEL: asm_clobbering_flags:
; CHECK: test
; CHECK-NEXT: setg
; CHECK-NEXT: #APP
; CHECK-NEXT: bsfl
; CHECK-NEXT: #NO_APP
; CHECK-NEXT: movl
; CHECK-NEXT: ret
define i1 @asm_clobbering_flags(i32* %mem) {
%val = load i32, i32* %mem, align 4
%cmp = icmp sgt i32 %val, 0
%res = tail call i32 asm "bsfl $1,$0", "=r,r,~{cc},~{dirflag},~{fpsr},~{flags}"(i32 %val)
store i32 %res, i32* %mem, align 4
ret i1 %cmp
}
|