1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
//===- PoisonChecking.cpp - -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements a transform pass which instruments IR such that poison semantics
// are made explicit. That is, it provides a (possibly partial) executable
// semantics for every instruction w.r.t. poison as specified in the LLVM
// LangRef. There are obvious parallels to the sanitizer tools, but this pass
// is focused purely on the semantics of LLVM IR, not any particular source
// language. If you're looking for something to see if your C/C++ contains
// UB, this is not it.
//
// The rewritten semantics of each instruction will include the following
// components:
//
// 1) The original instruction, unmodified.
// 2) A propagation rule which translates dynamic information about the poison
// state of each input to whether the dynamic output of the instruction
// produces poison.
// 3) A flag validation rule which validates any poison producing flags on the
// instruction itself (e.g. checks for overflow on nsw).
// 4) A check rule which traps (to a handler function) if this instruction must
// execute undefined behavior given the poison state of it's inputs.
//
// At the moment, the UB detection is done in a best effort manner; that is,
// the resulting code may produce a false negative result (not report UB when
// it actually exists according to the LangRef spec), but should never produce
// a false positive (report UB where it doesn't exist). The intention is to
// eventually support a "strict" mode which never dynamically reports a false
// negative at the cost of rejecting some valid inputs to translation.
//
// Use cases for this pass include:
// - Understanding (and testing!) the implications of the definition of poison
// from the LangRef.
// - Validating the output of a IR fuzzer to ensure that all programs produced
// are well defined on the specific input used.
// - Finding/confirming poison specific miscompiles by checking the poison
// status of an input/IR pair is the same before and after an optimization
// transform.
// - Checking that a bugpoint reduction does not introduce UB which didn't
// exist in the original program being reduced.
//
// The major sources of inaccuracy are currently:
// - Most validation rules not yet implemented for instructions with poison
// relavant flags. At the moment, only nsw/nuw on add/sub are supported.
// - UB which is control dependent on a branch on poison is not yet
// reported. Currently, only data flow dependence is modeled.
// - Poison which is propagated through memory is not modeled. As such,
// storing poison to memory and then reloading it will cause a false negative
// as we consider the reloaded value to not be poisoned.
// - Poison propagation across function boundaries is not modeled. At the
// moment, all arguments and return values are assumed not to be poison.
// - Undef is not modeled. In particular, the optimizer's freedom to pick
// concrete values for undef bits so as to maximize potential for producing
// poison is not modeled.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/PoisonChecking.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "poison-checking"
static cl::opt<bool>
LocalCheck("poison-checking-function-local",
cl::init(false),
cl::desc("Check that returns are non-poison (for testing)"));
static bool isConstantFalse(Value* V) {
assert(V->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->isZero();
return false;
}
static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
if (Ops.size() == 0)
return B.getFalse();
unsigned i = 0;
for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
if (i == Ops.size())
return B.getFalse();
Value *Accum = Ops[i++];
for (; i < Ops.size(); i++)
if (!isConstantFalse(Ops[i]))
Accum = B.CreateOr(Accum, Ops[i]);
return Accum;
}
static void generatePoisonChecksForBinOp(Instruction &I,
SmallVector<Value*, 2> &Checks) {
assert(isa<BinaryOperator>(I));
IRBuilder<> B(&I);
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
switch (I.getOpcode()) {
default:
return;
case Instruction::Add: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Sub: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Mul: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
};
}
static Value* generatePoisonChecks(Instruction &I) {
IRBuilder<> B(&I);
SmallVector<Value*, 2> Checks;
if (isa<BinaryOperator>(I))
generatePoisonChecksForBinOp(I, Checks);
return buildOrChain(B, Checks);
}
static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
auto Itr = ValToPoison.find(V);
if (Itr != ValToPoison.end())
return Itr->second;
if (isa<Constant>(V)) {
return ConstantInt::getFalse(V->getContext());
}
// Return false for unknwon values - this implements a non-strict mode where
// unhandled IR constructs are simply considered to never produce poison. At
// some point in the future, we probably want a "strict mode" for testing if
// nothing else.
return ConstantInt::getFalse(V->getContext());
}
static void CreateAssert(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(Cond))
if (CI->isAllOnesValue())
return;
Module *M = B.GetInsertBlock()->getModule();
M->getOrInsertFunction("__poison_checker_assert",
Type::getVoidTy(M->getContext()),
Type::getInt1Ty(M->getContext()));
Function *TrapFunc = M->getFunction("__poison_checker_assert");
B.CreateCall(TrapFunc, Cond);
}
static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
CreateAssert(B, B.CreateNot(Cond));
}
static bool rewrite(Function &F) {
auto * const Int1Ty = Type::getInt1Ty(F.getContext());
DenseMap<Value *, Value *> ValToPoison;
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
auto *NewPHI = PHINode::Create(Int1Ty,
OldPHI->getNumIncomingValues());
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
NewPHI->addIncoming(UndefValue::get(Int1Ty),
OldPHI->getIncomingBlock(i));
NewPHI->insertBefore(OldPHI);
ValToPoison[OldPHI] = NewPHI;
}
for (BasicBlock &BB : F)
for (Instruction &I : BB) {
if (isa<PHINode>(I)) continue;
IRBuilder<> B(cast<Instruction>(&I));
if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I)))
CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
if (LocalCheck)
if (auto *RI = dyn_cast<ReturnInst>(&I))
if (RI->getNumOperands() != 0) {
Value *Op = RI->getOperand(0);
CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
}
SmallVector<Value*, 4> Checks;
if (propagatesFullPoison(&I))
for (Value *V : I.operands())
Checks.push_back(getPoisonFor(ValToPoison, V));
if (auto *Check = generatePoisonChecks(I))
Checks.push_back(Check);
ValToPoison[&I] = buildOrChain(B, Checks);
}
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
if (!ValToPoison.count(OldPHI))
continue; // skip the newly inserted phis
auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
auto *OldVal = OldPHI->getIncomingValue(i);
NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
}
}
return true;
}
PreservedAnalyses PoisonCheckingPass::run(Module &M,
ModuleAnalysisManager &AM) {
bool Changed = false;
for (auto &F : M)
Changed |= rewrite(F);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
PreservedAnalyses PoisonCheckingPass::run(Function &F,
FunctionAnalysisManager &AM) {
return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
/* Major TODO Items:
- Control dependent poison UB
- Strict mode - (i.e. must analyze every operand)
- Poison through memory
- Function ABIs
Minor TODO items:
- Add propagation rules for and/or instructions
- Add hasPoisonFlags predicate to ValueTracking
- Add poison check rules for:
- exact flags, out of bounds operands
- inbounds (can't be strict due to unknown allocation sizes)
- fmf and fp casts
*/
|