summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/IPO/PoolAllocate.cpp
blob: 685071ffeea6cf7683ba5b60f5a238f23c3e0189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
//
// This transform changes programs so that disjoint data structures are
// allocated out of different pools of memory, increasing locality.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "PoolAllocation"
#include "llvm/Transforms/PoolAllocate.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Debug.h"
#include "Support/VectorExtras.h"
using namespace PA;

namespace {
  const Type *VoidPtrTy = PointerType::get(Type::SByteTy);

  // The type to allocate for a pool descriptor: { sbyte*, uint, uint }
  // void *Data (the data)
  // unsigned NodeSize  (size of an allocated node)
  // unsigned FreeablePool (are slabs in the pool freeable upon calls to 
  //                        poolfree?)
  const Type *PoolDescType = 
  StructType::get(make_vector<const Type*>(VoidPtrTy, Type::UIntTy, 
                                           Type::UIntTy, 0));
  
  const PointerType *PoolDescPtr = PointerType::get(PoolDescType);
  
  RegisterOpt<PoolAllocate>
  X("poolalloc", "Pool allocate disjoint data structures");
}

void PoolAllocate::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<BUDataStructures>();
  AU.addRequired<TDDataStructures>();
  AU.addRequired<TargetData>();
}

// Prints out the functions mapped to the leader of the equivalence class they
// belong to.
void PoolAllocate::printFuncECs() {
  std::map<Function*, Function*> &leaderMap = FuncECs.getLeaderMap();
  std::cerr << "Indirect Function Map \n";
  for (std::map<Function*, Function*>::iterator LI = leaderMap.begin(),
	 LE = leaderMap.end(); LI != LE; ++LI) {
    std::cerr << LI->first->getName() << ": leader is "
	      << LI->second->getName() << "\n";
  }
}

static void printNTOMap(std::map<Value*, const Value*> &NTOM) {
  std::cerr << "NTOM MAP\n";
  for (std::map<Value*, const Value *>::iterator I = NTOM.begin(), 
	 E = NTOM.end(); I != E; ++I) {
    if (!isa<Function>(I->first) && !isa<BasicBlock>(I->first))
      std::cerr << *I->first << " to " << *I->second << "\n";
  }
}

void PoolAllocate::buildIndirectFunctionSets(Module &M) {
  // Iterate over the module looking for indirect calls to functions

  // Get top down DSGraph for the functions
  TDDS = &getAnalysis<TDDataStructures>();
  
  for (Module::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) {

    DEBUG(std::cerr << "Processing indirect calls function:" <<  MI->getName() << "\n");

    if (MI->isExternal())
      continue;

    DSGraph &TDG = TDDS->getDSGraph(*MI);

    std::vector<DSCallSite> callSites = TDG.getFunctionCalls();

    // For each call site in the function
    // All the functions that can be called at the call site are put in the
    // same equivalence class.
    for (std::vector<DSCallSite>::iterator CSI = callSites.begin(), 
	   CSE = callSites.end(); CSI != CSE ; ++CSI) {
      if (CSI->isIndirectCall()) {
	DSNode *DSN = CSI->getCalleeNode();
	if (DSN->isIncomplete())
	  std::cerr << "Incomplete node " << CSI->getCallInst();
	// assert(DSN->isGlobalNode());
	const std::vector<GlobalValue*> &Callees = DSN->getGlobals();
	if (Callees.size() > 0) {
	  Function *firstCalledF = dyn_cast<Function>(*Callees.begin());
	  FuncECs.addElement(firstCalledF);
	  CallInstTargets.insert(std::pair<CallInst*,Function*>
				 (&CSI->getCallInst(),
				  firstCalledF));
	  if (Callees.size() > 1) {
	    for (std::vector<GlobalValue*>::const_iterator CalleesI = 
		   Callees.begin()+1, CalleesE = Callees.end(); 
		 CalleesI != CalleesE; ++CalleesI) {
	      Function *calledF = dyn_cast<Function>(*CalleesI);
	      FuncECs.unionSetsWith(firstCalledF, calledF);
	      CallInstTargets.insert(std::pair<CallInst*,Function*>
				     (&CSI->getCallInst(), calledF));
	    }
	  }
	} else {
	  std::cerr << "No targets " << CSI->getCallInst();
	}
      }
    }
  }
  
  // Print the equivalence classes
  DEBUG(printFuncECs());
}

bool PoolAllocate::run(Module &M) {
  if (M.begin() == M.end()) return false;
  CurModule = &M;
  
  AddPoolPrototypes();
  BU = &getAnalysis<BUDataStructures>();

  buildIndirectFunctionSets(M);

  std::map<Function*, Function*> FuncMap;

  // Loop over the functions in the original program finding the pool desc.
  // arguments necessary for each function that is indirectly callable.
  // For each equivalence class, make a list of pool arguments and update
  // the PoolArgFirst and PoolArgLast values for each function.
  Module::iterator LastOrigFunction = --M.end();
  for (Module::iterator I = M.begin(); ; ++I) {
    if (!I->isExternal())
      FindFunctionPoolArgs(*I);
    if (I == LastOrigFunction) break;
  }

  // Now clone a function using the pool arg list obtained in the previous
  // pass over the modules.
  // Loop over only the function initially in the program, don't traverse newly
  // added ones.  If the function uses memory, make its clone.
  for (Module::iterator I = M.begin(); ; ++I) {
    if (!I->isExternal())
      if (Function *R = MakeFunctionClone(*I))
        FuncMap[I] = R;
    if (I == LastOrigFunction) break;
  }
  
  ++LastOrigFunction;

  // Now that all call targets are available, rewrite the function bodies of the
  // clones.
  for (Module::iterator I = M.begin(); I != LastOrigFunction; ++I)
    if (!I->isExternal()) {
      std::map<Function*, Function*>::iterator FI = FuncMap.find(I);
      ProcessFunctionBody(*I, FI != FuncMap.end() ? *FI->second : *I);
    }

  if (CollapseFlag)
    std::cerr << "Pool Allocation successful! However all data structures may not be pool allocated\n";

  return true;
}


// AddPoolPrototypes - Add prototypes for the pool functions to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::AddPoolPrototypes() {
  CurModule->addTypeName("PoolDescriptor", PoolDescType);
  
  // Get poolinit function...
  FunctionType *PoolInitTy =
    FunctionType::get(Type::VoidTy,
                      make_vector<const Type*>(PoolDescPtr, Type::UIntTy, 0),
                      false);
  PoolInit = CurModule->getOrInsertFunction("poolinit", PoolInitTy);

  // Get pooldestroy function...
  std::vector<const Type*> PDArgs(1, PoolDescPtr);
  FunctionType *PoolDestroyTy =
    FunctionType::get(Type::VoidTy, PDArgs, false);
  PoolDestroy = CurModule->getOrInsertFunction("pooldestroy", PoolDestroyTy);
  
  // Get the poolalloc function...
  FunctionType *PoolAllocTy = FunctionType::get(VoidPtrTy, PDArgs, false);
  PoolAlloc = CurModule->getOrInsertFunction("poolalloc", PoolAllocTy);
  
  // Get the poolfree function...
  PDArgs.push_back(VoidPtrTy);       // Pointer to free
  FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, PDArgs, false);
  PoolFree = CurModule->getOrInsertFunction("poolfree", PoolFreeTy);
  
  // The poolallocarray function
  FunctionType *PoolAllocArrayTy =
    FunctionType::get(VoidPtrTy,
                      make_vector<const Type*>(PoolDescPtr, Type::UIntTy, 0),
                      false);
  PoolAllocArray = CurModule->getOrInsertFunction("poolallocarray", 
						  PoolAllocArrayTy);
  
}

// Inline the DSGraphs of functions corresponding to the potential targets at
// indirect call sites into the DS Graph of the callee.
// This is required to know what pools to create/pass at the call site in the 
// caller
//
void PoolAllocate::InlineIndirectCalls(Function &F, DSGraph &G, 
                                       hash_set<Function*> &visited) {
  std::vector<DSCallSite> callSites = G.getFunctionCalls();
  
  visited.insert(&F);

  // For each indirect call site in the function, inline all the potential
  // targets
  for (std::vector<DSCallSite>::iterator CSI = callSites.begin(),
         CSE = callSites.end(); CSI != CSE; ++CSI) {
    if (CSI->isIndirectCall()) {
      CallInst &CI = CSI->getCallInst();
      std::pair<std::multimap<CallInst*, Function*>::iterator,
        std::multimap<CallInst*, Function*>::iterator> Targets =
        CallInstTargets.equal_range(&CI);
      for (std::multimap<CallInst*, Function*>::iterator TFI = Targets.first,
             TFE = Targets.second; TFI != TFE; ++TFI) {
	DSGraph &TargetG = BU->getDSGraph(*TFI->second);
        // Call the function recursively if the callee is not yet inlined
        // and if it hasn't been visited in this sequence of calls
        // The latter is dependent on the fact that the graphs of all functions
        // in an SCC are actually the same
        if (InlinedFuncs.find(TFI->second) == InlinedFuncs.end() && 
            visited.find(TFI->second) == visited.end()) {
          InlineIndirectCalls(*TFI->second, TargetG, visited);
        }
        G.mergeInGraph(*CSI, *TFI->second, TargetG, DSGraph::KeepModRefBits | 
                       DSGraph::KeepAllocaBit | DSGraph::DontCloneCallNodes |
                       DSGraph::DontCloneAuxCallNodes); 
      }
    }
  }
  
  // Mark this function as one whose graph is inlined with its indirect 
  // function targets' DS Graphs.  This ensures that every function is inlined
  // exactly once
  InlinedFuncs.insert(&F);
}

void PoolAllocate::FindFunctionPoolArgs(Function &F) {

  // The DSGraph is merged with the globals graph. 
  DSGraph &G = BU->getDSGraph(F);
  G.mergeInGlobalsGraph();

  // Inline the potential targets of indirect calls
  hash_set<Function*> visitedFuncs;
  InlineIndirectCalls(F, G, visitedFuncs);

  // At this point the DS Graphs have been modified in place including
  // information about globals as well as indirect calls, making it useful
  // for pool allocation
  std::vector<DSNode*> &Nodes = G.getNodes();
  if (Nodes.empty()) return ;  // No memory activity, nothing is required

  FuncInfo &FI = FunctionInfo[&F];   // Create a new entry for F
  
  FI.Clone = 0;
  
  // Initialize the PoolArgFirst and PoolArgLast for the function depending
  // on whether there have been other functions in the equivalence class
  // that have pool arguments so far in the analysis.
  if (!FuncECs.findClass(&F)) {
    FI.PoolArgFirst = FI.PoolArgLast = 0;
  } else {
    if (EqClass2LastPoolArg.find(FuncECs.findClass(&F)) != 
	EqClass2LastPoolArg.end())
      FI.PoolArgFirst = FI.PoolArgLast = 
	EqClass2LastPoolArg[FuncECs.findClass(&F)] + 1;
    else
      FI.PoolArgFirst = FI.PoolArgLast = 0;
  }
  
  // Find DataStructure nodes which are allocated in pools non-local to the
  // current function.  This set will contain all of the DSNodes which require
  // pools to be passed in from outside of the function.
  hash_set<DSNode*> &MarkedNodes = FI.MarkedNodes;
  
  // Mark globals and incomplete nodes as live... (this handles arguments)
  if (F.getName() != "main")
    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
      if (Nodes[i]->isGlobalNode() && !Nodes[i]->isIncomplete())
        DEBUG(std::cerr << "Global node is not Incomplete\n");
      if ((Nodes[i]->isIncomplete() || Nodes[i]->isGlobalNode()) && 
	  Nodes[i]->isHeapNode())
        Nodes[i]->markReachableNodes(MarkedNodes);
    }

  // Marked the returned node as alive...
  if (DSNode *RetNode = G.getReturnNodeFor(F).getNode())
    if (RetNode->isHeapNode())
      RetNode->markReachableNodes(MarkedNodes);

  if (MarkedNodes.empty())   // We don't need to clone the function if there
    return;                  // are no incoming arguments to be added.

  // Erase any marked node that is not a heap node

  for (hash_set<DSNode*>::iterator I = MarkedNodes.begin(),
	 E = MarkedNodes.end(); I != E; ) {
    // erase invalidates hash_set iterators if the iterator points to the
    // element being erased
    if (!(*I)->isHeapNode())
      MarkedNodes.erase(I++);
    else
      ++I;
  }

  FI.PoolArgLast += MarkedNodes.size();


  if (FuncECs.findClass(&F)) {
    // Update the equivalence class last pool argument information
    // only if there actually were pool arguments to the function.
    // Also, there is no entry for the Eq. class in EqClass2LastPoolArg
    // if there are no functions in the equivalence class with pool arguments.
    if (FI.PoolArgLast != FI.PoolArgFirst)
      EqClass2LastPoolArg[FuncECs.findClass(&F)] = FI.PoolArgLast - 1;
  }
  
}

// MakeFunctionClone - If the specified function needs to be modified for pool
// allocation support, make a clone of it, adding additional arguments as
// neccesary, and return it.  If not, just return null.
//
Function *PoolAllocate::MakeFunctionClone(Function &F) {
  
  DSGraph &G = BU->getDSGraph(F);

  std::vector<DSNode*> &Nodes = G.getNodes();
  if (Nodes.empty())
    return 0;
    
  FuncInfo &FI = FunctionInfo[&F];
  
  hash_set<DSNode*> &MarkedNodes = FI.MarkedNodes;
  
  if (!FuncECs.findClass(&F)) {
    // Not in any equivalence class
    if (MarkedNodes.empty())
      return 0;
  } else {
    // No need to clone if there are no pool arguments in any function in the
    // equivalence class
    if (!EqClass2LastPoolArg.count(FuncECs.findClass(&F)))
      return 0;
  }
      
  // Figure out what the arguments are to be for the new version of the function
  const FunctionType *OldFuncTy = F.getFunctionType();
  std::vector<const Type*> ArgTys;
  if (!FuncECs.findClass(&F)) {
    ArgTys.reserve(OldFuncTy->getParamTypes().size() + MarkedNodes.size());
    FI.ArgNodes.reserve(MarkedNodes.size());
    for (hash_set<DSNode*>::iterator I = MarkedNodes.begin(),
	   E = MarkedNodes.end(); I != E; ++I) {
      ArgTys.push_back(PoolDescPtr);      // Add the appropriate # of pool descs
      FI.ArgNodes.push_back(*I);
    }
    if (FI.ArgNodes.empty()) return 0;      // No nodes to be pool allocated!

  }
  else {
    // This function is a member of an equivalence class and needs to be cloned 
    ArgTys.reserve(OldFuncTy->getParamTypes().size() + 
		   EqClass2LastPoolArg[FuncECs.findClass(&F)] + 1);
    FI.ArgNodes.reserve(EqClass2LastPoolArg[FuncECs.findClass(&F)] + 1);
    
    for (int i = 0; i <= EqClass2LastPoolArg[FuncECs.findClass(&F)]; ++i) {
      ArgTys.push_back(PoolDescPtr);      // Add the appropriate # of pool 
                                          // descs
    }

    for (hash_set<DSNode*>::iterator I = MarkedNodes.begin(),
	   E = MarkedNodes.end(); I != E; ++I) {
      FI.ArgNodes.push_back(*I);
    }

    assert ((FI.ArgNodes.size() == (unsigned) (FI.PoolArgLast - 
					       FI.PoolArgFirst)) && 
	    "Number of ArgNodes equal to the number of pool arguments used by this function");

    if (FI.ArgNodes.empty()) return 0;
  }
      
      
  ArgTys.insert(ArgTys.end(), OldFuncTy->getParamTypes().begin(),
                OldFuncTy->getParamTypes().end());


  // Create the new function prototype
  FunctionType *FuncTy = FunctionType::get(OldFuncTy->getReturnType(), ArgTys,
                                           OldFuncTy->isVarArg());
  // Create the new function...
  Function *New = new Function(FuncTy, GlobalValue::InternalLinkage,
                               F.getName(), F.getParent());

  // Set the rest of the new arguments names to be PDa<n> and add entries to the
  // pool descriptors map
  std::map<DSNode*, Value*> &PoolDescriptors = FI.PoolDescriptors;
  Function::aiterator NI = New->abegin();
  
  if (FuncECs.findClass(&F)) {
    // If the function belongs to an equivalence class
    for (int i = 0; i <= EqClass2LastPoolArg[FuncECs.findClass(&F)]; ++i, 
	   ++NI)
      NI->setName("PDa");
    
    NI = New->abegin();
    if (FI.PoolArgFirst > 0)
      for (int i = 0; i < FI.PoolArgFirst; ++NI, ++i)
	;

    for (unsigned i = 0, e = FI.ArgNodes.size(); i != e; ++i, ++NI)
      PoolDescriptors.insert(std::make_pair(FI.ArgNodes[i], NI));

    NI = New->abegin();
    if (EqClass2LastPoolArg.count(FuncECs.findClass(&F)))
      for (int i = 0; i <= EqClass2LastPoolArg[FuncECs.findClass(&F)]; ++i, ++NI)
	;
  } else {
    // If the function does not belong to an equivalence class
    if (FI.ArgNodes.size())
      for (unsigned i = 0, e = FI.ArgNodes.size(); i != e; ++i, ++NI) {
	NI->setName("PDa");  // Add pd entry
	PoolDescriptors.insert(std::make_pair(FI.ArgNodes[i], NI));
      }
    NI = New->abegin();
    if (FI.ArgNodes.size())
      for (unsigned i = 0; i < FI.ArgNodes.size(); ++NI, ++i)
	;
  }

  // Map the existing arguments of the old function to the corresponding
  // arguments of the new function.
  std::map<const Value*, Value*> ValueMap;
  if (NI != New->aend()) 
    for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++NI) {
      ValueMap[I] = NI;
      NI->setName(I->getName());
    }

  // Populate the value map with all of the globals in the program.
  // FIXME: This should be unneccesary!
  Module &M = *F.getParent();
  for (Module::iterator I = M.begin(), E=M.end(); I!=E; ++I)    ValueMap[I] = I;
  for (Module::giterator I = M.gbegin(), E=M.gend(); I!=E; ++I) ValueMap[I] = I;

  // Perform the cloning.
  std::vector<ReturnInst*> Returns;
  CloneFunctionInto(New, &F, ValueMap, Returns);

  // Invert the ValueMap into the NewToOldValueMap
  std::map<Value*, const Value*> &NewToOldValueMap = FI.NewToOldValueMap;
  for (std::map<const Value*, Value*>::iterator I = ValueMap.begin(),
         E = ValueMap.end(); I != E; ++I)
    NewToOldValueMap.insert(std::make_pair(I->second, I->first));
  
  return FI.Clone = New;
}


// processFunction - Pool allocate any data structures which are contained in
// the specified function...
//
void PoolAllocate::ProcessFunctionBody(Function &F, Function &NewF) {
  DSGraph &G = BU->getDSGraph(F);

  std::vector<DSNode*> &Nodes = G.getNodes();
  if (Nodes.empty()) return;     // Quick exit if nothing to do...
  
  FuncInfo &FI = FunctionInfo[&F];   // Get FuncInfo for F
  hash_set<DSNode*> &MarkedNodes = FI.MarkedNodes;
  
  DEBUG(std::cerr << "[" << F.getName() << "] Pool Allocate: ");
  
  // Loop over all of the nodes which are non-escaping, adding pool-allocatable
  // ones to the NodesToPA vector.
  std::vector<DSNode*> NodesToPA;
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    if (Nodes[i]->isHeapNode() &&   // Pick nodes with heap elems
        !MarkedNodes.count(Nodes[i]))              // Can't be marked
      NodesToPA.push_back(Nodes[i]);
  
  DEBUG(std::cerr << NodesToPA.size() << " nodes to pool allocate\n");
  if (!NodesToPA.empty()) {
    // Create pool construction/destruction code
    std::map<DSNode*, Value*> &PoolDescriptors = FI.PoolDescriptors;
    CreatePools(NewF, NodesToPA, PoolDescriptors);
  }
  
  // Transform the body of the function now...
  TransformFunctionBody(NewF, F, G, FI);
}


// CreatePools - This creates the pool initialization and destruction code for
// the DSNodes specified by the NodesToPA list.  This adds an entry to the
// PoolDescriptors map for each DSNode.
//
void PoolAllocate::CreatePools(Function &F,
                               const std::vector<DSNode*> &NodesToPA,
                               std::map<DSNode*, Value*> &PoolDescriptors) {
  // Find all of the return nodes in the CFG...
  std::vector<BasicBlock*> ReturnNodes;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (isa<ReturnInst>(I->getTerminator()))
      ReturnNodes.push_back(I);

  TargetData &TD = getAnalysis<TargetData>();

  // Loop over all of the pools, inserting code into the entry block of the
  // function for the initialization and code in the exit blocks for
  // destruction.
  //
  Instruction *InsertPoint = F.front().begin();
  for (unsigned i = 0, e = NodesToPA.size(); i != e; ++i) {
    DSNode *Node = NodesToPA[i];
    
    // Create a new alloca instruction for the pool...
    Value *AI = new AllocaInst(PoolDescType, 0, "PD", InsertPoint);
    
    Value *ElSize;
    
    // Void types in DS graph are never used
    if (Node->getType() != Type::VoidTy)
      ElSize = ConstantUInt::get(Type::UIntTy, TD.getTypeSize(Node->getType()));
    else {
      DEBUG(std::cerr << "Potential node collapsing in " << F.getName() 
		<< ". All Data Structures may not be pool allocated\n");
      ElSize = ConstantUInt::get(Type::UIntTy, 0);
    }
	
    // Insert the call to initialize the pool...
    new CallInst(PoolInit, make_vector(AI, ElSize, 0), "", InsertPoint);
      
    // Update the PoolDescriptors map
    PoolDescriptors.insert(std::make_pair(Node, AI));
    
    // Insert a call to pool destroy before each return inst in the function
    for (unsigned r = 0, e = ReturnNodes.size(); r != e; ++r)
      new CallInst(PoolDestroy, make_vector(AI, 0), "",
		   ReturnNodes[r]->getTerminator());
  }
}


namespace {
  /// FuncTransform - This class implements transformation required of pool
  /// allocated functions.
  struct FuncTransform : public InstVisitor<FuncTransform> {
    PoolAllocate &PAInfo;
    DSGraph &G;      // The Bottom-up DS Graph
    DSGraph &TDG;    // The Top-down DS Graph
    FuncInfo &FI;

    FuncTransform(PoolAllocate &P, DSGraph &g, DSGraph &tdg, FuncInfo &fi)
      : PAInfo(P), G(g), TDG(tdg), FI(fi) {
    }

    void visitMallocInst(MallocInst &MI);
    void visitFreeInst(FreeInst &FI);
    void visitCallInst(CallInst &CI);
    
    // The following instructions are never modified by pool allocation
    void visitBranchInst(BranchInst &I) { }
    void visitBinaryOperator(Instruction &I) { }
    void visitShiftInst (ShiftInst &I) { }
    void visitSwitchInst (SwitchInst &I) { }
    void visitCastInst (CastInst &I) { }
    void visitAllocaInst(AllocaInst &I) { }
    void visitLoadInst(LoadInst &I) { }
    void visitGetElementPtrInst (GetElementPtrInst &I) { }

    void visitReturnInst(ReturnInst &I);
    void visitStoreInst (StoreInst &I);
    void visitPHINode(PHINode &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "PoolAllocate does not recognize this instruction\n";
      abort();
    }

  private:
    DSNodeHandle& getDSNodeHFor(Value *V) {
      //      if (isa<Constant>(V))
      //	return DSNodeHandle();

      if (!FI.NewToOldValueMap.empty()) {
        // If the NewToOldValueMap is in effect, use it.
        std::map<Value*,const Value*>::iterator I = FI.NewToOldValueMap.find(V);
        if (I != FI.NewToOldValueMap.end())
          V = (Value*)I->second;
      }

      return G.getScalarMap()[V];
    }

    DSNodeHandle& getTDDSNodeHFor(Value *V) {
      if (!FI.NewToOldValueMap.empty()) {
        // If the NewToOldValueMap is in effect, use it.
        std::map<Value*,const Value*>::iterator I = FI.NewToOldValueMap.find(V);
        if (I != FI.NewToOldValueMap.end())
          V = (Value*)I->second;
      }

      return TDG.getScalarMap()[V];
    }

    Value *getPoolHandle(Value *V) {
      DSNode *Node = getDSNodeHFor(V).getNode();
      // Get the pool handle for this DSNode...
      std::map<DSNode*, Value*>::iterator I = FI.PoolDescriptors.find(Node);

      if (I != FI.PoolDescriptors.end()) {
	// Check that the node pointed to by V in the TD DS graph is not
	// collapsed
	DSNode *TDNode = getTDDSNodeHFor(V).getNode();
	if (TDNode->getType() != Type::VoidTy)
	  return I->second;
	else {
	  PAInfo.CollapseFlag = 1;
	  return 0;
	}
      }
      else
	return 0;
	  
    }
    
    bool isFuncPtr(Value *V);

    Function* getFuncClass(Value *V);

    Value* retCloneIfFunc(Value *V);
  };
}

void PoolAllocate::TransformFunctionBody(Function &F, Function &OldF,
                                         DSGraph &G, FuncInfo &FI) {
  FuncTransform(*this, G, TDDS->getDSGraph(OldF), FI).visit(F);
}

// Returns true if V is a function pointer
bool FuncTransform::isFuncPtr(Value *V) {
  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
     return isa<FunctionType>(PTy->getElementType());
  return false;
}

// Given a function pointer, return the function eq. class if one exists
Function* FuncTransform::getFuncClass(Value *V) {
  // Look at DSGraph and see if the set of of functions it could point to
  // are pool allocated.

  if (!isFuncPtr(V))
    return 0;

  // Two cases: 
  // if V is a constant
  if (Function *theFunc = dyn_cast<Function>(V)) {
    if (!PAInfo.FuncECs.findClass(theFunc))
      // If this function does not belong to any equivalence class
      return 0;
    if (PAInfo.EqClass2LastPoolArg.count(PAInfo.FuncECs.findClass(theFunc)))
      return PAInfo.FuncECs.findClass(theFunc);
    else
      return 0;
  }

  // if V is not a constant
  DSNode *DSN = TDG.getNodeForValue(V).getNode();
  if (!DSN) {
    return 0;
  }
  const std::vector<GlobalValue*> &Callees = DSN->getGlobals();
  if (Callees.size() > 0) {
    Function *calledF = dyn_cast<Function>(*Callees.begin());
    assert(PAInfo.FuncECs.findClass(calledF) && "should exist in some eq. class");
    if (PAInfo.EqClass2LastPoolArg.count(PAInfo.FuncECs.findClass(calledF)))
      return PAInfo.FuncECs.findClass(calledF);
  }

  return 0;
}

// Returns the clone if  V is a static function (not a pointer) and belongs 
// to an equivalence class i.e. is pool allocated
Value* FuncTransform::retCloneIfFunc(Value *V) {
  if (Function *fixedFunc = dyn_cast<Function>(V))
    if (getFuncClass(V))
      return PAInfo.getFuncInfo(*fixedFunc)->Clone;
  
  return 0;
}

void FuncTransform::visitReturnInst (ReturnInst &RI) {
  if (RI.getNumOperands())
    if (Value *clonedFunc = retCloneIfFunc(RI.getOperand(0))) {
      // Cast the clone of RI.getOperand(0) to the non-pool-allocated type
      CastInst *CastI = new CastInst(clonedFunc, RI.getOperand(0)->getType(), 
				     "tmp", &RI);
      // Insert return instruction that returns the casted value
      ReturnInst *RetI = new ReturnInst(CastI, &RI);

      // Remove original return instruction
      RI.getParent()->getInstList().erase(&RI);

      if (!FI.NewToOldValueMap.empty()) {
	std::map<Value*,const Value*>::iterator II =
	  FI.NewToOldValueMap.find(&RI);
	assert(II != FI.NewToOldValueMap.end() && 
	       "RI not found in clone?");
	FI.NewToOldValueMap.insert(std::make_pair(RetI, II->second));
	FI.NewToOldValueMap.erase(II);
      }
    }
}

void FuncTransform::visitStoreInst (StoreInst &SI) {
  // Check if a constant function is being stored
  if (Value *clonedFunc = retCloneIfFunc(SI.getOperand(0))) {
    CastInst *CastI = new CastInst(clonedFunc, SI.getOperand(0)->getType(), 
				   "tmp", &SI);
    StoreInst *StoreI = new StoreInst(CastI, SI.getOperand(1), &SI);
    SI.getParent()->getInstList().erase(&SI);
    
    // Update the NewToOldValueMap if this is a clone
    if (!FI.NewToOldValueMap.empty()) {
      std::map<Value*,const Value*>::iterator II =
	FI.NewToOldValueMap.find(&SI);
      assert(II != FI.NewToOldValueMap.end() && 
	     "SI not found in clone?");
      FI.NewToOldValueMap.insert(std::make_pair(StoreI, II->second));
      FI.NewToOldValueMap.erase(II);
    }
  }
}

void FuncTransform::visitPHINode(PHINode &PI) {
  // If any of the operands of the PHI node is a constant function pointer
  // that is cloned, the cast instruction has to be inserted at the end of the
  // previous basic block
  
  if (isFuncPtr(&PI)) {
    PHINode *V = new PHINode(PI.getType(), PI.getName(), &PI);
    for (unsigned i = 0 ; i < PI.getNumIncomingValues(); ++i) {
      if (Value *clonedFunc = retCloneIfFunc(PI.getIncomingValue(i))) {
	// Insert CastInst at the end of  PI.getIncomingBlock(i)
	BasicBlock::iterator BBI = --PI.getIncomingBlock(i)->end();
	// BBI now points to the terminator instruction of the basic block.
	CastInst *CastI = new CastInst(clonedFunc, PI.getType(), "tmp", BBI);
	V->addIncoming(CastI, PI.getIncomingBlock(i));
      } else {
	V->addIncoming(PI.getIncomingValue(i), PI.getIncomingBlock(i));
      }
      
    }
    PI.replaceAllUsesWith(V);
    PI.getParent()->getInstList().erase(&PI);
    
    DSGraph::ScalarMapTy &SM = G.getScalarMap();
    DSGraph::ScalarMapTy::iterator PII = SM.find(&PI); 

    // Update Scalar map of DSGraph if this is one of the original functions
    // Otherwise update the NewToOldValueMap
    if (PII != SM.end()) {
      SM.insert(std::make_pair(V, PII->second));
      SM.erase(PII);                     // Destroy the PHINode
    } else {
      std::map<Value*,const Value*>::iterator II =
	FI.NewToOldValueMap.find(&PI);
      assert(II != FI.NewToOldValueMap.end() && 
	     "PhiI not found in clone?");
      FI.NewToOldValueMap.insert(std::make_pair(V, II->second));
      FI.NewToOldValueMap.erase(II);
    }
  }
}

void FuncTransform::visitMallocInst(MallocInst &MI) {
  // Get the pool handle for the node that this contributes to...
  Value *PH = getPoolHandle(&MI);
  
  // NB: PH is zero even if the node is collapsed
  if (PH == 0) return;

  // Insert a call to poolalloc
  Value *V;
  if (MI.isArrayAllocation()) 
    V = new CallInst(PAInfo.PoolAllocArray, 
		     make_vector(PH, MI.getOperand(0), 0),
		     MI.getName(), &MI);
  else
    V = new CallInst(PAInfo.PoolAlloc, make_vector(PH, 0),
		     MI.getName(), &MI);
  
  MI.setName("");  // Nuke MIs name
  
  Value *Casted = V;

  // Cast to the appropriate type if necessary
  if (V->getType() != MI.getType()) {
    Casted = new CastInst(V, MI.getType(), V->getName(), &MI);
  }
    
  // Update def-use info
  MI.replaceAllUsesWith(Casted);

  // Remove old malloc instruction
  MI.getParent()->getInstList().erase(&MI);
  
  DSGraph::ScalarMapTy &SM = G.getScalarMap();
  DSGraph::ScalarMapTy::iterator MII = SM.find(&MI);
  
  // If we are modifying the original function, update the DSGraph... 
  if (MII != SM.end()) {
    // V and Casted now point to whatever the original malloc did...
    SM.insert(std::make_pair(V, MII->second));
    if (V != Casted)
      SM.insert(std::make_pair(Casted, MII->second));
    SM.erase(MII);                     // The malloc is now destroyed
  } else {             // Otherwise, update the NewToOldValueMap
    std::map<Value*,const Value*>::iterator MII =
      FI.NewToOldValueMap.find(&MI);
    assert(MII != FI.NewToOldValueMap.end() && "MI not found in clone?");
    FI.NewToOldValueMap.insert(std::make_pair(V, MII->second));
    if (V != Casted)
      FI.NewToOldValueMap.insert(std::make_pair(Casted, MII->second));
    FI.NewToOldValueMap.erase(MII);
  }
}

void FuncTransform::visitFreeInst(FreeInst &FrI) {
  Value *Arg = FrI.getOperand(0);
  Value *PH = getPoolHandle(Arg);  // Get the pool handle for this DSNode...
  if (PH == 0) return;
  // Insert a cast and a call to poolfree...
  Value *Casted = Arg;
  if (Arg->getType() != PointerType::get(Type::SByteTy))
    Casted = new CastInst(Arg, PointerType::get(Type::SByteTy),
				 Arg->getName()+".casted", &FrI);

  CallInst *FreeI = new CallInst(PAInfo.PoolFree, make_vector(PH, Casted, 0), 
				 "", &FrI);
  // Delete the now obsolete free instruction...
  FrI.getParent()->getInstList().erase(&FrI);
  
  // Update the NewToOldValueMap if this is a clone
  if (!FI.NewToOldValueMap.empty()) {
    std::map<Value*,const Value*>::iterator II =
      FI.NewToOldValueMap.find(&FrI);
    assert(II != FI.NewToOldValueMap.end() && 
	   "FrI not found in clone?");
    FI.NewToOldValueMap.insert(std::make_pair(FreeI, II->second));
    FI.NewToOldValueMap.erase(II);
  }
}

static void CalcNodeMapping(DSNodeHandle& Caller, DSNodeHandle& Callee,
                            std::map<DSNode*, DSNode*> &NodeMapping) {
  DSNode *CalleeNode = Callee.getNode();
  DSNode *CallerNode = Caller.getNode();

  unsigned CalleeOffset = Callee.getOffset();
  unsigned CallerOffset = Caller.getOffset();

  if (CalleeNode == 0) return;

  // If callee has a node and caller doesn't, then a constant argument was
  // passed by the caller
  if (CallerNode == 0) {
    NodeMapping.insert(NodeMapping.end(), std::make_pair(CalleeNode, 
							 (DSNode *) 0));
  }

  // Map the callee node to the caller node. 
  // NB: The callee node could be of a different type. Eg. if it points to the
  // field of a struct that the caller points to
  std::map<DSNode*, DSNode*>::iterator I = NodeMapping.find(CalleeNode);
  if (I != NodeMapping.end()) {   // Node already in map...
    assert(I->second == CallerNode && 
	   "Node maps to different nodes on paths?");
  } else {
    NodeMapping.insert(I, std::make_pair(CalleeNode, CallerNode));
    
    if (CalleeNode->getType() != CallerNode->getType() && CallerOffset == 0) 
      DEBUG(std::cerr << "NB: Mapping of nodes between different types\n");

    // Recursively map the callee links to the caller links starting from the
    // offset in the node into which they are mapped.
    // Being a BU Graph, the callee ought to have smaller number of links unless
    // there is collapsing in the caller
    unsigned numCallerLinks = CallerNode->getNumLinks() - CallerOffset;
    unsigned numCalleeLinks = CalleeNode->getNumLinks() - CalleeOffset;
    
    if (numCallerLinks > 0) {
      if (numCallerLinks < numCalleeLinks) {
	DEBUG(std::cerr << "Potential node collapsing in caller\n");
	for (unsigned i = 0, e = numCalleeLinks; i != e; ++i)
	  CalcNodeMapping(CallerNode->getLink(((i%numCallerLinks) << DS::PointerShift) + CallerOffset), CalleeNode->getLink((i << DS::PointerShift) + CalleeOffset), NodeMapping);
      } else {
	for (unsigned i = 0, e = numCalleeLinks; i != e; ++i)
	  CalcNodeMapping(CallerNode->getLink((i << DS::PointerShift) + CallerOffset), CalleeNode->getLink((i << DS::PointerShift) + CalleeOffset), NodeMapping);
      }
    } else if (numCalleeLinks > 0) {
      DEBUG(std::cerr << 
	    "Caller has unexpanded node, due to indirect call perhaps!\n");
    }
  }
}

void FuncTransform::visitCallInst(CallInst &CI) {
  Function *CF = CI.getCalledFunction();
  
  // optimization for function pointers that are basically gotten from a cast
  // with only one use and constant expressions with casts in them
  if (!CF) {
    if (CastInst* CastI = dyn_cast<CastInst>(CI.getCalledValue())) {
      if (isa<Function>(CastI->getOperand(0)) && 
	  CastI->getOperand(0)->getType() == CastI->getType())
	CF = dyn_cast<Function>(CastI->getOperand(0));
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI.getOperand(0))) {
      if (CE->getOpcode() == Instruction::Cast) {
	if (isa<ConstantPointerRef>(CE->getOperand(0)))
	  return;
	else
	  assert(0 && "Function pointer cast not handled as called function\n");
      }
    }    

  }

  DSGraph &CallerG = G;

  std::vector<Value*> Args;  
  if (!CF) {   // Indirect call
    DEBUG(std::cerr << "  Handling call: " << CI);
    
    std::map<unsigned, Value*> PoolArgs;
    Function *FuncClass;
    
    std::pair<std::multimap<CallInst*, Function*>::iterator,
              std::multimap<CallInst*, Function*>::iterator> Targets =
      PAInfo.CallInstTargets.equal_range(&CI);
    for (std::multimap<CallInst*, Function*>::iterator TFI = Targets.first,
	   TFE = Targets.second; TFI != TFE; ++TFI) {
      if (TFI == Targets.first) {
	FuncClass = PAInfo.FuncECs.findClass(TFI->second);
	// Nothing to transform if there are no pool arguments in this
	// equivalence class of functions.
	if (!PAInfo.EqClass2LastPoolArg.count(FuncClass))
	  return;
      }
      
      FuncInfo *CFI = PAInfo.getFuncInfo(*TFI->second);

      if (!CFI->ArgNodes.size()) continue;  // Nothing to transform...
      
      DSGraph &CG = PAInfo.getBUDataStructures().getDSGraph(*TFI->second);  
      std::map<DSNode*, DSNode*> NodeMapping;
      
      Function::aiterator AI = TFI->second->abegin(), AE = TFI->second->aend();
      unsigned OpNum = 1;
      for ( ; AI != AE; ++AI, ++OpNum) {
	if (!isa<Constant>(CI.getOperand(OpNum)))
	  CalcNodeMapping(getDSNodeHFor(CI.getOperand(OpNum)), 
                          CG.getScalarMap()[AI], NodeMapping);
      }
      assert(OpNum == CI.getNumOperands() && "Varargs calls not handled yet!");
      
      if (CI.getType() != Type::VoidTy)
        CalcNodeMapping(getDSNodeHFor(&CI),
                        CG.getReturnNodeFor(*TFI->second), NodeMapping);
      
      // Map the nodes that are pointed to by globals.
      // For all globals map getDSNodeForGlobal(g)->CG.getDSNodeForGlobal(g)
      for (DSGraph::ScalarMapTy::iterator SMI = G.getScalarMap().begin(), 
             SME = G.getScalarMap().end(); SMI != SME; ++SMI)
        if (isa<GlobalValue>(SMI->first)) { 
          CalcNodeMapping(SMI->second, 
                          CG.getScalarMap()[SMI->first], NodeMapping);
        }

      unsigned idx = CFI->PoolArgFirst;

      // The following loop determines the pool pointers corresponding to 
      // CFI.
      for (unsigned i = 0, e = CFI->ArgNodes.size(); i != e; ++i, ++idx) {
        if (NodeMapping.count(CFI->ArgNodes[i])) {
          assert(NodeMapping.count(CFI->ArgNodes[i]) && "Node not in mapping!");
          DSNode *LocalNode = NodeMapping.find(CFI->ArgNodes[i])->second;
          if (LocalNode) {
            assert(FI.PoolDescriptors.count(LocalNode) &&
                   "Node not pool allocated?");
            PoolArgs[idx] = FI.PoolDescriptors.find(LocalNode)->second;
          }
          else
            // LocalNode is null when a constant is passed in as a parameter
            PoolArgs[idx] = Constant::getNullValue(PoolDescPtr);
        } else {
          PoolArgs[idx] = Constant::getNullValue(PoolDescPtr);
        }
      }
    }
    
    // Push the pool arguments into Args.
    if (PAInfo.EqClass2LastPoolArg.count(FuncClass)) {
      for (int i = 0; i <= PAInfo.EqClass2LastPoolArg[FuncClass]; ++i) {
        if (PoolArgs.find(i) != PoolArgs.end())
          Args.push_back(PoolArgs[i]);
        else
          Args.push_back(Constant::getNullValue(PoolDescPtr));
      }
    
      assert(Args.size()== (unsigned) PAInfo.EqClass2LastPoolArg[FuncClass] + 1
             && "Call has same number of pool args as the called function");
    }

    // Add the rest of the arguments (the original arguments of the function)...
    Args.insert(Args.end(), CI.op_begin()+1, CI.op_end());
    
    std::string Name = CI.getName();
    
    Value *NewCall;
    if (Args.size() > CI.getNumOperands() - 1) {
      // If there are any pool arguments
      CastInst *CastI = 
	new CastInst(CI.getOperand(0), 
		     PAInfo.getFuncInfo(*FuncClass)->Clone->getType(), "tmp", 
		     &CI);
      NewCall = new CallInst(CastI, Args, Name, &CI);
    } else {
      NewCall = new CallInst(CI.getOperand(0), Args, Name, &CI);
    }

    CI.replaceAllUsesWith(NewCall);
    DEBUG(std::cerr << "  Result Call: " << *NewCall);
      
    if (CI.getType() != Type::VoidTy) {
      // If we are modifying the original function, update the DSGraph... 
      DSGraph::ScalarMapTy &SM = G.getScalarMap();
      DSGraph::ScalarMapTy::iterator CII = SM.find(&CI); 
      if (CII != SM.end()) {
	SM.insert(std::make_pair(NewCall, CII->second));
	SM.erase(CII);                     // Destroy the CallInst
      } else { 
	// Otherwise update the NewToOldValueMap with the new CI return value
	std::map<Value*,const Value*>::iterator CII = 
	  FI.NewToOldValueMap.find(&CI);
	assert(CII != FI.NewToOldValueMap.end() && "CI not found in clone?");
	FI.NewToOldValueMap.insert(std::make_pair(NewCall, CII->second));
	FI.NewToOldValueMap.erase(CII);
      }
    } else if (!FI.NewToOldValueMap.empty()) {
      std::map<Value*,const Value*>::iterator II =
	FI.NewToOldValueMap.find(&CI);
      assert(II != FI.NewToOldValueMap.end() && 
	     "CI not found in clone?");
      FI.NewToOldValueMap.insert(std::make_pair(NewCall, II->second));
      FI.NewToOldValueMap.erase(II);
    }
  }
  else {

    FuncInfo *CFI = PAInfo.getFuncInfo(*CF);

    if (CFI == 0 || CFI->Clone == 0) return;  // Nothing to transform...
    
    DEBUG(std::cerr << "  Handling call: " << CI);
    
    DSGraph &CG = PAInfo.getBUDataStructures().getDSGraph(*CF);  // Callee graph

    // We need to figure out which local pool descriptors correspond to the pool
    // descriptor arguments passed into the function call.  Calculate a mapping
    // from callee DSNodes to caller DSNodes.  We construct a partial isomophism
    // between the graphs to figure out which pool descriptors need to be passed
    // in.  The roots of this mapping is found from arguments and return values.
    //
    std::map<DSNode*, DSNode*> NodeMapping;
    
    Function::aiterator AI = CF->abegin(), AE = CF->aend();
    unsigned OpNum = 1;
    for (; AI != AE; ++AI, ++OpNum) {
      Value *callOp = CI.getOperand(OpNum);
      if (!isa<Constant>(callOp))
	CalcNodeMapping(getDSNodeHFor(callOp), CG.getScalarMap()[AI], 
			NodeMapping);
    }
    assert(OpNum == CI.getNumOperands() && "Varargs calls not handled yet!");
    
    // Map the return value as well...
    if (CI.getType() != Type::VoidTy)
      CalcNodeMapping(getDSNodeHFor(&CI), CG.getReturnNodeFor(*CF),
		      NodeMapping);

    // Map the nodes that are pointed to by globals.
    // For all globals map getDSNodeForGlobal(g)->CG.getDSNodeForGlobal(g)
    for (DSGraph::ScalarMapTy::iterator SMI = G.getScalarMap().begin(), 
	   SME = G.getScalarMap().end(); SMI != SME; ++SMI)
      if (isa<GlobalValue>(SMI->first)) { 
	CalcNodeMapping(SMI->second, 
			CG.getScalarMap()[SMI->first], NodeMapping);
      }

    // Okay, now that we have established our mapping, we can figure out which
    // pool descriptors to pass in...

    // Add an argument for each pool which must be passed in...
    if (CFI->PoolArgFirst != 0) {
      for (int i = 0; i < CFI->PoolArgFirst; ++i)
	Args.push_back(Constant::getNullValue(PoolDescPtr));  
    }

    for (unsigned i = 0, e = CFI->ArgNodes.size(); i != e; ++i) {
      if (NodeMapping.count(CFI->ArgNodes[i])) {

	DSNode *LocalNode = NodeMapping.find(CFI->ArgNodes[i])->second;
	if (LocalNode) {
	  assert(FI.PoolDescriptors.count(LocalNode) &&
                 "Node not pool allocated?");
	  Args.push_back(FI.PoolDescriptors.find(LocalNode)->second);
	} else
	  Args.push_back(Constant::getNullValue(PoolDescPtr));
      } else {
	Args.push_back(Constant::getNullValue(PoolDescPtr));
      }
    }

    Function *FuncClass = PAInfo.FuncECs.findClass(CF);
    
    if (PAInfo.EqClass2LastPoolArg.count(FuncClass))
      for (int i = CFI->PoolArgLast; 
	   i <= PAInfo.EqClass2LastPoolArg[FuncClass]; ++i)
	Args.push_back(Constant::getNullValue(PoolDescPtr));

    // Add the rest of the arguments...
    Args.insert(Args.end(), CI.op_begin()+1, CI.op_end());
    
    std::string Name = CI.getName(); 

    std::map<Value*,const Value*>::iterator CNewII; 
    
    Value *NewCall = new CallInst(CFI->Clone, Args, Name, &CI);

    CI.replaceAllUsesWith(NewCall);
    DEBUG(std::cerr << "  Result Call: " << *NewCall);

    if (CI.getType() != Type::VoidTy) {
      // If we are modifying the original function, update the DSGraph... 
      DSGraph::ScalarMapTy &SM = G.getScalarMap();
      DSGraph::ScalarMapTy::iterator CII = SM.find(&CI); 
      if (CII != SM.end()) {
	SM.insert(std::make_pair(NewCall, CII->second));
	SM.erase(CII);                     // Destroy the CallInst
      } else { 
	// Otherwise update the NewToOldValueMap with the new CI return value
	std::map<Value*,const Value*>::iterator CNII = 
	  FI.NewToOldValueMap.find(&CI);
	assert(CNII != FI.NewToOldValueMap.end() && CNII->second && 
	       "CI not found in clone?");
	FI.NewToOldValueMap.insert(std::make_pair(NewCall, CNII->second));
	FI.NewToOldValueMap.erase(CNII);
      }
    } else if (!FI.NewToOldValueMap.empty()) {
      std::map<Value*,const Value*>::iterator II =
	FI.NewToOldValueMap.find(&CI);
      assert(II != FI.NewToOldValueMap.end() && "CI not found in clone?");
      FI.NewToOldValueMap.insert(std::make_pair(NewCall, II->second));
      FI.NewToOldValueMap.erase(II);
    }
  }

  CI.getParent()->getInstList().erase(&CI);
}
OpenPOWER on IntegriCloud