summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/IPO/Attributor.cpp
blob: e85ac3add7bb3a514da5190ec152f59839116592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/Attributor.h"

#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;

#define DEBUG_TYPE "attributor"

STATISTIC(NumFnWithExactDefinition,
          "Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
          "Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
          "Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
          "Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
          "Number of abstract attributes manifested in IR");
STATISTIC(NumFnNoUnwind, "Number of functions marked nounwind");

STATISTIC(NumFnUniqueReturned, "Number of function with unique return");
STATISTIC(NumFnKnownReturns, "Number of function with known return values");
STATISTIC(NumFnArgumentReturned,
          "Number of function arguments marked returned");

// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
    MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
                          cl::desc("Maximal number of fixpoint iterations."),
                          cl::init(32));

static cl::opt<bool> DisableAttributor(
    "attributor-disable", cl::Hidden,
    cl::desc("Disable the attributor inter-procedural deduction pass."),
    cl::init(true));

static cl::opt<bool> VerifyAttributor(
    "attributor-verify", cl::Hidden,
    cl::desc("Verify the Attributor deduction and "
             "manifestation of attributes -- may issue false-positive errors"),
    cl::init(false));

/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
  return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
  return l == ChangeStatus::UNCHANGED ? l : r;
}
///}

/// Helper to adjust the statistics.
static void bookkeeping(AbstractAttribute::ManifestPosition MP,
                        const Attribute &Attr) {
  if (!AreStatisticsEnabled())
    return;

  if (!Attr.isEnumAttribute())
    return;
  switch (Attr.getKindAsEnum()) {
  case Attribute::NoUnwind:
    NumFnNoUnwind++;
    return;
  case Attribute::Returned:
    NumFnArgumentReturned++;
    return;
  default:
    return;
  }
}

template <typename StateTy>
using followValueCB_t = std::function<bool(Value *, StateTy &State)>;
template <typename StateTy>
using visitValueCB_t = std::function<void(Value *, StateTy &State)>;

/// Recursively visit all values that might become \p InitV at some point. This
/// will be done by looking through cast instructions, selects, phis, and calls
/// with the "returned" attribute. The callback \p FollowValueCB is asked before
/// a potential origin value is looked at. If no \p FollowValueCB is passed, a
/// default one is used that will make sure we visit every value only once. Once
/// we cannot look through the value any further, the callback \p VisitValueCB
/// is invoked and passed the current value and the \p State. To limit how much
/// effort is invested, we will never visit more than \p MaxValues values.
template <typename StateTy>
static bool genericValueTraversal(
    Value *InitV, StateTy &State, visitValueCB_t<StateTy> &VisitValueCB,
    followValueCB_t<StateTy> *FollowValueCB = nullptr, int MaxValues = 8) {

  SmallPtrSet<Value *, 16> Visited;
  followValueCB_t<bool> DefaultFollowValueCB = [&](Value *Val, bool &) {
    return Visited.insert(Val).second;
  };

  if (!FollowValueCB)
    FollowValueCB = &DefaultFollowValueCB;

  SmallVector<Value *, 16> Worklist;
  Worklist.push_back(InitV);

  int Iteration = 0;
  do {
    Value *V = Worklist.pop_back_val();

    // Check if we should process the current value. To prevent endless
    // recursion keep a record of the values we followed!
    if (!(*FollowValueCB)(V, State))
      continue;

    // Make sure we limit the compile time for complex expressions.
    if (Iteration++ >= MaxValues)
      return false;

    // Explicitly look through calls with a "returned" attribute if we do
    // not have a pointer as stripPointerCasts only works on them.
    if (V->getType()->isPointerTy()) {
      V = V->stripPointerCasts();
    } else {
      CallSite CS(V);
      if (CS && CS.getCalledFunction()) {
        Value *NewV = nullptr;
        for (Argument &Arg : CS.getCalledFunction()->args())
          if (Arg.hasReturnedAttr()) {
            NewV = CS.getArgOperand(Arg.getArgNo());
            break;
          }
        if (NewV) {
          Worklist.push_back(NewV);
          continue;
        }
      }
    }

    // Look through select instructions, visit both potential values.
    if (auto *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // Look through phi nodes, visit all operands.
    if (auto *PHI = dyn_cast<PHINode>(V)) {
      Worklist.append(PHI->op_begin(), PHI->op_end());
      continue;
    }

    // Once a leaf is reached we inform the user through the callback.
    VisitValueCB(V, State);
  } while (!Worklist.empty());

  // All values have been visited.
  return true;
}

/// Helper to identify the correct offset into an attribute list.
static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
                             unsigned ArgNo = 0) {
  switch (MP) {
  case AbstractAttribute::MP_ARGUMENT:
  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
    return ArgNo + AttributeList::FirstArgIndex;
  case AbstractAttribute::MP_FUNCTION:
    return AttributeList::FunctionIndex;
  case AbstractAttribute::MP_RETURNED:
    return AttributeList::ReturnIndex;
  }
  llvm_unreachable("Unknown manifest position!");
}

/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
  if (!Old.isIntAttribute())
    return true;

  return Old.getValueAsInt() >= New.getValueAsInt();
}

/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p MP and \p ArgNo.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
                             AttributeList &Attrs,
                             AbstractAttribute::ManifestPosition MP,
                             unsigned ArgNo = 0) {
  unsigned AttrIdx = getAttrIndex(MP, ArgNo);

  if (Attr.isEnumAttribute()) {
    Attribute::AttrKind Kind = Attr.getKindAsEnum();
    if (Attrs.hasAttribute(AttrIdx, Kind))
      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
        return false;
    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
    return true;
  }
  if (Attr.isStringAttribute()) {
    StringRef Kind = Attr.getKindAsString();
    if (Attrs.hasAttribute(AttrIdx, Kind))
      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
        return false;
    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
    return true;
  }

  llvm_unreachable("Expected enum or string attribute!");
}

ChangeStatus AbstractAttribute::update(Attributor &A) {
  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
  if (getState().isAtFixpoint())
    return HasChanged;

  LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");

  HasChanged = updateImpl(A);

  LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
                    << "\n");

  return HasChanged;
}

ChangeStatus AbstractAttribute::manifest(Attributor &A) {
  assert(getState().isValidState() &&
         "Attempted to manifest an invalid state!");
  assert(getAssociatedValue() &&
         "Attempted to manifest an attribute without associated value!");

  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
  SmallVector<Attribute, 4> DeducedAttrs;
  getDeducedAttributes(DeducedAttrs);

  Function &ScopeFn = getAnchorScope();
  LLVMContext &Ctx = ScopeFn.getContext();
  ManifestPosition MP = getManifestPosition();

  AttributeList Attrs;
  SmallVector<unsigned, 4> ArgNos;

  // In the following some generic code that will manifest attributes in
  // DeducedAttrs if they improve the current IR. Due to the different
  // annotation positions we use the underlying AttributeList interface.
  // Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.

  switch (MP) {
  case MP_ARGUMENT:
    ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
    Attrs = ScopeFn.getAttributes();
    break;
  case MP_FUNCTION:
  case MP_RETURNED:
    ArgNos.push_back(0);
    Attrs = ScopeFn.getAttributes();
    break;
  case MP_CALL_SITE_ARGUMENT: {
    CallSite CS(&getAnchoredValue());
    for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
      if (CS.getArgOperand(u) == getAssociatedValue())
        ArgNos.push_back(u);
    Attrs = CS.getAttributes();
  }
  }

  for (const Attribute &Attr : DeducedAttrs) {
    for (unsigned ArgNo : ArgNos) {
      if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
        continue;

      HasChanged = ChangeStatus::CHANGED;
      bookkeeping(MP, Attr);
    }
  }

  if (HasChanged == ChangeStatus::UNCHANGED)
    return HasChanged;

  switch (MP) {
  case MP_ARGUMENT:
  case MP_FUNCTION:
  case MP_RETURNED:
    ScopeFn.setAttributes(Attrs);
    break;
  case MP_CALL_SITE_ARGUMENT:
    CallSite(&getAnchoredValue()).setAttributes(Attrs);
  }

  return HasChanged;
}

Function &AbstractAttribute::getAnchorScope() {
  Value &V = getAnchoredValue();
  if (isa<Function>(V))
    return cast<Function>(V);
  if (isa<Argument>(V))
    return *cast<Argument>(V).getParent();
  if (isa<Instruction>(V))
    return *cast<Instruction>(V).getFunction();
  llvm_unreachable("No scope for anchored value found!");
}

const Function &AbstractAttribute::getAnchorScope() const {
  return const_cast<AbstractAttribute *>(this)->getAnchorScope();
}

/// -----------------------NoUnwind Function Attribute--------------------------

struct AANoUnwindFunction : AANoUnwind, BooleanState {

  AANoUnwindFunction(Function &F, InformationCache &InfoCache)
      : AANoUnwind(F, InfoCache) {}

  /// See AbstractAttribute::getState()
  /// {
  AbstractState &getState() override { return *this; }
  const AbstractState &getState() const override { return *this; }
  /// }

  /// See AbstractAttribute::getManifestPosition().
  virtual ManifestPosition getManifestPosition() const override {
    return MP_FUNCTION;
  }

  virtual const std::string getAsStr() const override {
    return getAssumed() ? "nounwind" : "may-unwind";
  }

  /// See AbstractAttribute::updateImpl(...).
  virtual ChangeStatus updateImpl(Attributor &A) override;

  /// See AANoUnwind::isAssumedNoUnwind().
  virtual bool isAssumedNoUnwind() const override { return getAssumed(); }

  /// See AANoUnwind::isKnownNoUnwind().
  virtual bool isKnownNoUnwind() const override { return getKnown(); }
};

ChangeStatus AANoUnwindFunction::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  // The map from instruction opcodes to those instructions in the function.
  auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
  auto Opcodes = {
      (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
      (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
      (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};

  for (unsigned Opcode : Opcodes) {
    for (Instruction *I : OpcodeInstMap[Opcode]) {
      if (!I->mayThrow())
        continue;

      auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, *I);

      if (!NoUnwindAA || !NoUnwindAA->isAssumedNoUnwind()) {
        indicatePessimisticFixpoint();
        return ChangeStatus::CHANGED;
      }
    }
  }
  return ChangeStatus::UNCHANGED;
}

/// --------------------- Function Return Values -------------------------------

/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
///   - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl final : public AAReturnedValues, AbstractState {

  /// Mapping of values potentially returned by the associated function to the
  /// return instructions that might return them.
  DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues;

  /// State flags
  ///
  ///{
  bool IsFixed;
  bool IsValidState;
  bool HasOverdefinedReturnedCalls;
  ///}

  /// Collect values that could become \p V in the set \p Values, each mapped to
  /// \p ReturnInsts.
  void collectValuesRecursively(
      Attributor &A, Value *V, SmallPtrSetImpl<ReturnInst *> &ReturnInsts,
      DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> &Values) {

    visitValueCB_t<bool> VisitValueCB = [&](Value *Val, bool &) {
      assert(!isa<Instruction>(Val) ||
             &getAnchorScope() == cast<Instruction>(Val)->getFunction());
      Values[Val].insert(ReturnInsts.begin(), ReturnInsts.end());
    };

    bool UnusedBool;
    bool Success = genericValueTraversal(V, UnusedBool, VisitValueCB);

    // If we did abort the above traversal we haven't see all the values.
    // Consequently, we cannot know if the information we would derive is
    // accurate so we give up early.
    if (!Success)
      indicatePessimisticFixpoint();
  }

public:
  /// See AbstractAttribute::AbstractAttribute(...).
  AAReturnedValuesImpl(Function &F, InformationCache &InfoCache)
      : AAReturnedValues(F, InfoCache) {
    // We do not have an associated argument yet.
    AssociatedVal = nullptr;
  }

  /// See AbstractAttribute::initialize(...).
  void initialize(Attributor &A) override {
    // Reset the state.
    AssociatedVal = nullptr;
    IsFixed = false;
    IsValidState = true;
    HasOverdefinedReturnedCalls = false;
    ReturnedValues.clear();

    Function &F = cast<Function>(getAnchoredValue());

    // The map from instruction opcodes to those instructions in the function.
    auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);

    // Look through all arguments, if one is marked as returned we are done.
    for (Argument &Arg : F.args()) {
      if (Arg.hasReturnedAttr()) {

        auto &ReturnInstSet = ReturnedValues[&Arg];
        for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
          ReturnInstSet.insert(cast<ReturnInst>(RI));

        indicateOptimisticFixpoint();
        return;
      }
    }

    // If no argument was marked as returned we look at all return instructions
    // and collect potentially returned values.
    for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) {
      SmallPtrSet<ReturnInst *, 1> RISet({cast<ReturnInst>(RI)});
      collectValuesRecursively(A, cast<ReturnInst>(RI)->getReturnValue(), RISet,
                               ReturnedValues);
    }
  }

  /// See AbstractAttribute::manifest(...).
  virtual ChangeStatus manifest(Attributor &A) override;

  /// See AbstractAttribute::getState(...).
  virtual AbstractState &getState() override { return *this; }

  /// See AbstractAttribute::getState(...).
  virtual const AbstractState &getState() const override { return *this; }

  /// See AbstractAttribute::getManifestPosition().
  virtual ManifestPosition getManifestPosition() const override {
    return MP_ARGUMENT;
  }

  /// See AbstractAttribute::updateImpl(Attributor &A).
  virtual ChangeStatus updateImpl(Attributor &A) override;

  /// Return the number of potential return values, -1 if unknown.
  size_t getNumReturnValues() const {
    return isValidState() ? ReturnedValues.size() : -1;
  }

  /// Return an assumed unique return value if a single candidate is found. If
  /// there cannot be one, return a nullptr. If it is not clear yet, return the
  /// Optional::NoneType.
  Optional<Value *> getAssumedUniqueReturnValue() const;

  /// See AbstractState::checkForallReturnedValues(...).
  virtual bool
  checkForallReturnedValues(std::function<bool(Value &)> &Pred) const override;

  /// Pretty print the attribute similar to the IR representation.
  virtual const std::string getAsStr() const override;

  /// See AbstractState::isAtFixpoint().
  bool isAtFixpoint() const override { return IsFixed; }

  /// See AbstractState::isValidState().
  bool isValidState() const override { return IsValidState; }

  /// See AbstractState::indicateOptimisticFixpoint(...).
  void indicateOptimisticFixpoint() override {
    IsFixed = true;
    IsValidState &= true;
  }
  void indicatePessimisticFixpoint() override {
    IsFixed = true;
    IsValidState = false;
  }
};

ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
  ChangeStatus Changed = ChangeStatus::UNCHANGED;

  // Bookkeeping.
  assert(isValidState());
  NumFnKnownReturns++;

  // Check if we have an assumed unique return value that we could manifest.
  Optional<Value *> UniqueRV = getAssumedUniqueReturnValue();

  if (!UniqueRV.hasValue() || !UniqueRV.getValue())
    return Changed;

  // Bookkeeping.
  NumFnUniqueReturned++;

  // If the assumed unique return value is an argument, annotate it.
  if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
    AssociatedVal = UniqueRVArg;
    Changed = AbstractAttribute::manifest(A) | Changed;
  }

  return Changed;
}

const std::string AAReturnedValuesImpl::getAsStr() const {
  return (isAtFixpoint() ? "returns(#" : "may-return(#") +
         (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
}

Optional<Value *> AAReturnedValuesImpl::getAssumedUniqueReturnValue() const {
  // If checkForallReturnedValues provides a unique value, ignoring potential
  // undef values that can also be present, it is assumed to be the actual
  // return value and forwarded to the caller of this method. If there are
  // multiple, a nullptr is returned indicating there cannot be a unique
  // returned value.
  Optional<Value *> UniqueRV;

  std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
    // If we found a second returned value and neither the current nor the saved
    // one is an undef, there is no unique returned value. Undefs are special
    // since we can pretend they have any value.
    if (UniqueRV.hasValue() && UniqueRV != &RV &&
        !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
      UniqueRV = nullptr;
      return false;
    }

    // Do not overwrite a value with an undef.
    if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
      UniqueRV = &RV;

    return true;
  };

  if (!checkForallReturnedValues(Pred))
    UniqueRV = nullptr;

  return UniqueRV;
}

bool AAReturnedValuesImpl::checkForallReturnedValues(
    std::function<bool(Value &)> &Pred) const {
  if (!isValidState())
    return false;

  // Check all returned values but ignore call sites as long as we have not
  // encountered an overdefined one during an update.
  for (auto &It : ReturnedValues) {
    Value *RV = It.first;

    ImmutableCallSite ICS(RV);
    if (ICS && !HasOverdefinedReturnedCalls)
      continue;

    if (!Pred(*RV))
      return false;
  }

  return true;
}

ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {

  // Check if we know of any values returned by the associated function,
  // if not, we are done.
  if (getNumReturnValues() == 0) {
    indicateOptimisticFixpoint();
    return ChangeStatus::UNCHANGED;
  }

  // Check if any of the returned values is a call site we can refine.
  decltype(ReturnedValues) AddRVs;
  bool HasCallSite = false;

  // Look at all returned call sites.
  for (auto &It : ReturnedValues) {
    SmallPtrSet<ReturnInst *, 2> &ReturnInsts = It.second;
    Value *RV = It.first;
    LLVM_DEBUG(dbgs() << "[AAReturnedValues] Potentially returned value " << *RV
                      << "\n");

    // Only call sites can change during an update, ignore the rest.
    CallSite RetCS(RV);
    if (!RetCS)
      continue;

    // For now, any call site we see will prevent us from directly fixing the
    // state. However, if the information on the callees is fixed, the call
    // sites will be removed and we will fix the information for this state.
    HasCallSite = true;

    // Try to find a assumed unique return value for the called function.
    auto *RetCSAA = A.getAAFor<AAReturnedValuesImpl>(*this, *RV);
    if (!RetCSAA || !RetCSAA->isValidState()) {
      HasOverdefinedReturnedCalls = true;
      LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site (" << *RV
                        << ") with " << (RetCSAA ? "invalid" : "no")
                        << " associated state\n");
      continue;
    }

    // Try to find a assumed unique return value for the called function.
    Optional<Value *> AssumedUniqueRV = RetCSAA->getAssumedUniqueReturnValue();

    // If no assumed unique return value was found due to the lack of
    // candidates, we may need to resolve more calls (through more update
    // iterations) or the called function will not return. Either way, we simply
    // stick with the call sites as return values. Because there were not
    // multiple possibilities, we do not treat it as overdefined.
    if (!AssumedUniqueRV.hasValue())
      continue;

    // If multiple, non-refinable values were found, there cannot be a unique
    // return value for the called function. The returned call is overdefined!
    if (!AssumedUniqueRV.getValue()) {
      HasOverdefinedReturnedCalls = true;
      LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site has multiple "
                           "potentially returned values\n");
      continue;
    }

    LLVM_DEBUG({
      bool UniqueRVIsKnown = RetCSAA->isAtFixpoint();
      dbgs() << "[AAReturnedValues] Returned call site "
             << (UniqueRVIsKnown ? "known" : "assumed")
             << " unique return value: " << *AssumedUniqueRV << "\n";
    });

    // The assumed unique return value.
    Value *AssumedRetVal = AssumedUniqueRV.getValue();

    // If the assumed unique return value is an argument, lookup the matching
    // call site operand and recursively collect new returned values.
    // If it is not an argument, it is just put into the set of returned values
    // as we would have already looked through casts, phis, and similar values.
    if (Argument *AssumedRetArg = dyn_cast<Argument>(AssumedRetVal))
      collectValuesRecursively(A,
                               RetCS.getArgOperand(AssumedRetArg->getArgNo()),
                               ReturnInsts, AddRVs);
    else
      AddRVs[AssumedRetVal].insert(ReturnInsts.begin(), ReturnInsts.end());
  }

  // Keep track of any change to trigger updates on dependent attributes.
  ChangeStatus Changed = ChangeStatus::UNCHANGED;

  for (auto &It : AddRVs) {
    assert(!It.second.empty() && "Entry does not add anything.");
    auto &ReturnInsts = ReturnedValues[It.first];
    for (ReturnInst *RI : It.second)
      if (ReturnInsts.insert(RI).second) {
        LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
                          << *It.first << " => " << *RI << "\n");
        Changed = ChangeStatus::CHANGED;
      }
  }

  // If there is no call site in the returned values we are done.
  if (!HasCallSite) {
    indicateOptimisticFixpoint();
    return ChangeStatus::CHANGED;
  }

  return Changed;
}

/// ----------------------------------------------------------------------------
///                               Attributor
/// ----------------------------------------------------------------------------

ChangeStatus Attributor::run() {
  // Initialize all abstract attributes.
  for (AbstractAttribute *AA : AllAbstractAttributes)
    AA->initialize(*this);

  LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
                    << AllAbstractAttributes.size()
                    << " abstract attributes.\n");

  // Now that all abstract attributes are collected and initialized we start
  // the abstract analysis.

  unsigned IterationCounter = 1;

  SmallVector<AbstractAttribute *, 64> ChangedAAs;
  SetVector<AbstractAttribute *> Worklist;
  Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());

  do {
    LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
                      << ", Worklist size: " << Worklist.size() << "\n");

    // Add all abstract attributes that are potentially dependent on one that
    // changed to the work list.
    for (AbstractAttribute *ChangedAA : ChangedAAs) {
      auto &QuerriedAAs = QueryMap[ChangedAA];
      Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
    }

    // Reset the changed set.
    ChangedAAs.clear();

    // Update all abstract attribute in the work list and record the ones that
    // changed.
    for (AbstractAttribute *AA : Worklist)
      if (AA->update(*this) == ChangeStatus::CHANGED)
        ChangedAAs.push_back(AA);

    // Reset the work list and repopulate with the changed abstract attributes.
    // Note that dependent ones are added above.
    Worklist.clear();
    Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());

  } while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);

  LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
                    << IterationCounter << "/" << MaxFixpointIterations
                    << " iterations\n");

  bool FinishedAtFixpoint = Worklist.empty();

  // Reset abstract arguments not settled in a sound fixpoint by now. This
  // happens when we stopped the fixpoint iteration early. Note that only the
  // ones marked as "changed" *and* the ones transitively depending on them
  // need to be reverted to a pessimistic state. Others might not be in a
  // fixpoint state but we can use the optimistic results for them anyway.
  SmallPtrSet<AbstractAttribute *, 32> Visited;
  for (unsigned u = 0; u < ChangedAAs.size(); u++) {
    AbstractAttribute *ChangedAA = ChangedAAs[u];
    if (!Visited.insert(ChangedAA).second)
      continue;

    AbstractState &State = ChangedAA->getState();
    if (!State.isAtFixpoint()) {
      State.indicatePessimisticFixpoint();

      NumAttributesTimedOut++;
    }

    auto &QuerriedAAs = QueryMap[ChangedAA];
    ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
  }

  LLVM_DEBUG({
    if (!Visited.empty())
      dbgs() << "\n[Attributor] Finalized " << Visited.size()
             << " abstract attributes.\n";
  });

  unsigned NumManifested = 0;
  unsigned NumAtFixpoint = 0;
  ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
  for (AbstractAttribute *AA : AllAbstractAttributes) {
    AbstractState &State = AA->getState();

    // If there is not already a fixpoint reached, we can now take the
    // optimistic state. This is correct because we enforced a pessimistic one
    // on abstract attributes that were transitively dependent on a changed one
    // already above.
    if (!State.isAtFixpoint())
      State.indicateOptimisticFixpoint();

    // If the state is invalid, we do not try to manifest it.
    if (!State.isValidState())
      continue;

    // Manifest the state and record if we changed the IR.
    ChangeStatus LocalChange = AA->manifest(*this);
    ManifestChange = ManifestChange | LocalChange;

    NumAtFixpoint++;
    NumManifested += (LocalChange == ChangeStatus::CHANGED);
  }

  (void)NumManifested;
  (void)NumAtFixpoint;
  LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
                    << " arguments while " << NumAtFixpoint
                    << " were in a valid fixpoint state\n");

  // If verification is requested, we finished this run at a fixpoint, and the
  // IR was changed, we re-run the whole fixpoint analysis, starting at
  // re-initialization of the arguments. This re-run should not result in an IR
  // change. Though, the (virtual) state of attributes at the end of the re-run
  // might be more optimistic than the known state or the IR state if the better
  // state cannot be manifested.
  if (VerifyAttributor && FinishedAtFixpoint &&
      ManifestChange == ChangeStatus::CHANGED) {
    VerifyAttributor = false;
    ChangeStatus VerifyStatus = run();
    if (VerifyStatus != ChangeStatus::UNCHANGED)
      llvm_unreachable(
          "Attributor verification failed, re-run did result in an IR change "
          "even after a fixpoint was reached in the original run. (False "
          "positives possible!)");
    VerifyAttributor = true;
  }

  NumAttributesManifested += NumManifested;
  NumAttributesValidFixpoint += NumAtFixpoint;

  return ManifestChange;
}

void Attributor::identifyDefaultAbstractAttributes(
    Function &F, InformationCache &InfoCache,
    DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {

  // Every function can be nounwind.
  registerAA(*new AANoUnwindFunction(F, InfoCache));

  // Return attributes are only appropriate if the return type is non void.
  Type *ReturnType = F.getReturnType();
  if (!ReturnType->isVoidTy()) {
    // Argument attribute "returned" --- Create only one per function even
    // though it is an argument attribute.
    if (!Whitelist || Whitelist->count(AAReturnedValues::ID))
      registerAA(*new AAReturnedValuesImpl(F, InfoCache));
  }

  // Walk all instructions to find more attribute opportunities and also
  // interesting instructions that might be queried by abstract attributes
  // during their initialization or update.
  auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
  auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];

  for (Instruction &I : instructions(&F)) {
    bool IsInterestingOpcode = false;

    // To allow easy access to all instructions in a function with a given
    // opcode we store them in the InfoCache. As not all opcodes are interesting
    // to concrete attributes we only cache the ones that are as identified in
    // the following switch.
    // Note: There are no concrete attributes now so this is initially empty.
    switch (I.getOpcode()) {
    default:
      assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
             "New call site/base instruction type needs to be known int the "
             "attributor.");
      break;
    case Instruction::Call:
    case Instruction::CallBr:
    case Instruction::Invoke:
    case Instruction::CleanupRet:
    case Instruction::CatchSwitch:
    case Instruction::Resume:
    case Instruction::Ret:
      IsInterestingOpcode = true;
    }
    if (IsInterestingOpcode)
      InstOpcodeMap[I.getOpcode()].push_back(&I);
    if (I.mayReadOrWriteMemory())
      ReadOrWriteInsts.push_back(&I);
  }
}

/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
  return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}

raw_ostream &llvm::operator<<(raw_ostream &OS,
                              AbstractAttribute::ManifestPosition AP) {
  switch (AP) {
  case AbstractAttribute::MP_ARGUMENT:
    return OS << "arg";
  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
    return OS << "cs_arg";
  case AbstractAttribute::MP_FUNCTION:
    return OS << "fn";
  case AbstractAttribute::MP_RETURNED:
    return OS << "fn_ret";
  }
  llvm_unreachable("Unknown attribute position!");
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
  return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
  AA.print(OS);
  return OS;
}

void AbstractAttribute::print(raw_ostream &OS) const {
  OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
     << AnchoredVal.getName() << "]";
}
///}

/// ----------------------------------------------------------------------------
///                       Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------

static bool runAttributorOnModule(Module &M) {
  if (DisableAttributor)
    return false;

  LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
                    << " functions.\n");

  // Create an Attributor and initially empty information cache that is filled
  // while we identify default attribute opportunities.
  Attributor A;
  InformationCache InfoCache;

  for (Function &F : M) {
    // TODO: Not all attributes require an exact definition. Find a way to
    //       enable deduction for some but not all attributes in case the
    //       definition might be changed at runtime, see also
    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
    // TODO: We could always determine abstract attributes and if sufficient
    //       information was found we could duplicate the functions that do not
    //       have an exact definition.
    if (!F.hasExactDefinition()) {
      NumFnWithoutExactDefinition++;
      continue;
    }

    // For now we ignore naked and optnone functions.
    if (F.hasFnAttribute(Attribute::Naked) ||
        F.hasFnAttribute(Attribute::OptimizeNone))
      continue;

    NumFnWithExactDefinition++;

    // Populate the Attributor with abstract attribute opportunities in the
    // function and the information cache with IR information.
    A.identifyDefaultAbstractAttributes(F, InfoCache);
  }

  return A.run() == ChangeStatus::CHANGED;
}

PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
  if (runAttributorOnModule(M)) {
    // FIXME: Think about passes we will preserve and add them here.
    return PreservedAnalyses::none();
  }
  return PreservedAnalyses::all();
}

namespace {

struct AttributorLegacyPass : public ModulePass {
  static char ID;

  AttributorLegacyPass() : ModulePass(ID) {
    initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;
    return runAttributorOnModule(M);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // FIXME: Think about passes we will preserve and add them here.
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }

char AttributorLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
                      "Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
                    "Deduce and propagate attributes", false, false)
OpenPOWER on IntegriCloud