summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86ShuffleDecodeConstantPool.cpp
blob: f24f38d4a2192e877da42b0474022fc18b352151 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//===-- X86ShuffleDecodeConstantPool.cpp - X86 shuffle decode -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics using
// constants from the constant pool.
//
//===----------------------------------------------------------------------===//

#include "X86ShuffleDecodeConstantPool.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/IR/Constants.h"

//===----------------------------------------------------------------------===//
//  Vector Mask Decoding
//===----------------------------------------------------------------------===//

namespace llvm {

void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
  Type *MaskTy = C->getType();
  // It is not an error for the PSHUFB mask to not be a vector of i8 because the
  // constant pool uniques constants by their bit representation.
  // e.g. the following take up the same space in the constant pool:
  //   i128 -170141183420855150465331762880109871104
  //
  //   <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
  //
  //   <4 x i32> <i32 -2147483648, i32 -2147483648,
  //              i32 -2147483648, i32 -2147483648>

#ifndef NDEBUG
  unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
  assert(MaskTySize == 128 || MaskTySize == 256 || MaskTySize == 512);
#endif

  if (!MaskTy->isVectorTy())
    return;
  int NumElts = MaskTy->getVectorNumElements();

  Type *EltTy = MaskTy->getVectorElementType();
  if (!EltTy->isIntegerTy())
    return;

  // The shuffle mask requires a byte vector - decode cases with
  // wider elements as well.
  unsigned BitWidth = cast<IntegerType>(EltTy)->getBitWidth();
  if ((BitWidth % 8) != 0)
    return;

  int Scale = BitWidth / 8;
  int NumBytes = NumElts * Scale;
  ShuffleMask.reserve(NumBytes);

  for (int i = 0; i != NumElts; ++i) {
    Constant *COp = C->getAggregateElement(i);
    if (!COp) {
      ShuffleMask.clear();
      return;
    } else if (isa<UndefValue>(COp)) {
      ShuffleMask.append(Scale, SM_SentinelUndef);
      continue;
    }

    APInt APElt = cast<ConstantInt>(COp)->getValue();
    for (int j = 0; j != Scale; ++j) {
      // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
      // lane of the vector we're inside.
      int Base = ((i * Scale) + j) & ~0xf;

      uint64_t Element = APElt.getLoBits(8).getZExtValue();
      APElt = APElt.lshr(8);

      // If the high bit (7) of the byte is set, the element is zeroed.
      if (Element & (1 << 7))
        ShuffleMask.push_back(SM_SentinelZero);
      else {
        // Only the least significant 4 bits of the byte are used.
        int Index = Base + (Element & 0xf);
        ShuffleMask.push_back(Index);
      }
    }
  }

  assert(NumBytes == (int)ShuffleMask.size() && "Unexpected shuffle mask size");
}

void DecodeVPERMILPMask(const Constant *C, unsigned ElSize,
                        SmallVectorImpl<int> &ShuffleMask) {
  Type *MaskTy = C->getType();
  // It is not an error for the PSHUFB mask to not be a vector of i8 because the
  // constant pool uniques constants by their bit representation.
  // e.g. the following take up the same space in the constant pool:
  //   i128 -170141183420855150465331762880109871104
  //
  //   <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
  //
  //   <4 x i32> <i32 -2147483648, i32 -2147483648,
  //              i32 -2147483648, i32 -2147483648>

  unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();

  if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
    return;

  // Only support vector types.
  if (!MaskTy->isVectorTy())
    return;

  // Make sure its an integer type.
  Type *VecEltTy = MaskTy->getVectorElementType();
  if (!VecEltTy->isIntegerTy())
    return;

  // Support any element type from byte up to element size.
  // This is necessary primarily because 64-bit elements get split to 32-bit
  // in the constant pool on 32-bit target.
  unsigned EltTySize = VecEltTy->getIntegerBitWidth();
  if (EltTySize < 8 || EltTySize > ElSize)
    return;

  unsigned NumElements = MaskTySize / ElSize;
  assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
         "Unexpected number of vector elements.");
  ShuffleMask.reserve(NumElements);
  unsigned NumElementsPerLane = 128 / ElSize;
  unsigned Factor = ElSize / EltTySize;

  for (unsigned i = 0; i < NumElements; ++i) {
    Constant *COp = C->getAggregateElement(i * Factor);
    if (!COp) {
      ShuffleMask.clear();
      return;
    } else if (isa<UndefValue>(COp)) {
      ShuffleMask.push_back(SM_SentinelUndef);
      continue;
    }
    int Index = i & ~(NumElementsPerLane - 1);
    uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
    if (ElSize == 64)
      Index += (Element >> 1) & 0x1;
    else
      Index += Element & 0x3;
    ShuffleMask.push_back(Index);
  }

  // TODO: Handle funny-looking vectors too.
}

void DecodeVPPERMMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
  Type *MaskTy = C->getType();
  assert(MaskTy->getPrimitiveSizeInBits() == 128);

  // Only support vector types.
  if (!MaskTy->isVectorTy())
    return;

  // Make sure its an integer type.
  Type *VecEltTy = MaskTy->getVectorElementType();
  if (!VecEltTy->isIntegerTy())
    return;

  // The shuffle mask requires a byte vector - decode cases with
  // wider elements as well.
  unsigned BitWidth = cast<IntegerType>(VecEltTy)->getBitWidth();
  if ((BitWidth % 8) != 0)
    return;

  int NumElts = MaskTy->getVectorNumElements();
  int Scale = BitWidth / 8;
  int NumBytes = NumElts * Scale;
  ShuffleMask.reserve(NumBytes);

  for (int i = 0; i != NumElts; ++i) {
    Constant *COp = C->getAggregateElement(i);
    if (!COp) {
      ShuffleMask.clear();
      return;
    } else if (isa<UndefValue>(COp)) {
      ShuffleMask.append(Scale, SM_SentinelUndef);
      continue;
    }

    // VPPERM Operation
    // Bits[4:0] - Byte Index (0 - 31)
    // Bits[7:5] - Permute Operation
    //
    // Permute Operation:
    // 0 - Source byte (no logical operation).
    // 1 - Invert source byte.
    // 2 - Bit reverse of source byte.
    // 3 - Bit reverse of inverted source byte.
    // 4 - 00h (zero - fill).
    // 5 - FFh (ones - fill).
    // 6 - Most significant bit of source byte replicated in all bit positions.
    // 7 - Invert most significant bit of source byte and replicate in all bit positions.
    APInt MaskElt = cast<ConstantInt>(COp)->getValue();
    for (int j = 0; j != Scale; ++j) {
      APInt Index = MaskElt.getLoBits(5);
      APInt PermuteOp = MaskElt.lshr(5).getLoBits(3);
      MaskElt = MaskElt.lshr(8);

      if (PermuteOp == 4) {
        ShuffleMask.push_back(SM_SentinelZero);
        continue;
      }
      if (PermuteOp != 0) {
        ShuffleMask.clear();
        return;
      }
      ShuffleMask.push_back((int)Index.getZExtValue());
    }
  }

  assert(NumBytes == (int)ShuffleMask.size() && "Unexpected shuffle mask size");
}

void DecodeVPERMVMask(const Constant *C, MVT VT,
                      SmallVectorImpl<int> &ShuffleMask) {
  Type *MaskTy = C->getType();
  if (MaskTy->isVectorTy()) {
    unsigned NumElements = MaskTy->getVectorNumElements();
    if (NumElements == VT.getVectorNumElements()) {
      for (unsigned i = 0; i < NumElements; ++i) {
        Constant *COp = C->getAggregateElement(i);
        if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) {
          ShuffleMask.clear();
          return;
        }
        if (isa<UndefValue>(COp))
          ShuffleMask.push_back(SM_SentinelUndef);
        else {
          uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
          Element &= (1 << NumElements) - 1;
          ShuffleMask.push_back(Element);
        }
      }
    }
    return;
  }
  // Scalar value; just broadcast it
  if (!isa<ConstantInt>(C))
    return;
  uint64_t Element = cast<ConstantInt>(C)->getZExtValue();
  int NumElements = VT.getVectorNumElements();
  Element &= (1 << NumElements) - 1;
  for (int i = 0; i < NumElements; ++i)
    ShuffleMask.push_back(Element);
}

void DecodeVPERMV3Mask(const Constant *C, MVT VT,
                       SmallVectorImpl<int> &ShuffleMask) {
  Type *MaskTy = C->getType();
  unsigned NumElements = MaskTy->getVectorNumElements();
  if (NumElements == VT.getVectorNumElements()) {
    unsigned EltMaskSize = Log2_64(NumElements * 2);
    for (unsigned i = 0; i < NumElements; ++i) {
      Constant *COp = C->getAggregateElement(i);
      if (!COp) {
        ShuffleMask.clear();
        return;
      }
      if (isa<UndefValue>(COp))
        ShuffleMask.push_back(SM_SentinelUndef);
      else {
        APInt Element = cast<ConstantInt>(COp)->getValue();
        Element = Element.getLoBits(EltMaskSize);
        ShuffleMask.push_back(Element.getZExtValue());
      }
    }
  }
}
} // llvm namespace
OpenPOWER on IntegriCloud