summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86Schedule.td
blob: 0244c277c03804f84dd8f71ea96680af6ed81bf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// InstrSchedModel annotations for out-of-order CPUs.
//
// These annotations are independent of the itinerary classes defined below.

// Instructions with folded loads need to read the memory operand immediately,
// but other register operands don't have to be read until the load is ready.
// These operands are marked with ReadAfterLd.
def ReadAfterLd : SchedRead;

// Instructions with both a load and a store folded are modeled as a folded
// load + WriteRMW.
def WriteRMW : SchedWrite;

// Most instructions can fold loads, so almost every SchedWrite comes in two
// variants: With and without a folded load.
// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
// with a folded load.
class X86FoldableSchedWrite : SchedWrite {
  // The SchedWrite to use when a load is folded into the instruction.
  SchedWrite Folded;
}

// Multiclass that produces a linked pair of SchedWrites.
multiclass X86SchedWritePair {
  // Register-Memory operation.
  def Ld : SchedWrite;
  // Register-Register operation.
  def NAME : X86FoldableSchedWrite {
    let Folded = !cast<SchedWrite>(NAME#"Ld");
  }
}

// Loads, stores, and moves, not folded with other operations.
def WriteLoad  : SchedWrite;
def WriteStore : SchedWrite;
def WriteMove  : SchedWrite;

// Arithmetic.
defm WriteALU  : X86SchedWritePair; // Simple integer ALU op.
def WriteALURMW : WriteSequence<[WriteALULd, WriteStore]>;
defm WriteIMul : X86SchedWritePair; // Integer multiplication.
def  WriteIMulH : SchedWrite;       // Integer multiplication, high part.
defm WriteIDiv : X86SchedWritePair; // Integer division.
def  WriteLEA  : SchedWrite;        // LEA instructions can't fold loads.

defm WriteBitScan : X86SchedWritePair; // Bit scan forward/reverse.
defm WritePOPCNT : X86SchedWritePair; // Bit population count.
defm WriteLZCNT : X86SchedWritePair; // Leading zero count.
defm WriteTZCNT : X86SchedWritePair; // Trailing zero count.
defm WriteCMOV : X86SchedWritePair; // Conditional move.
def  WriteSETCC : SchedWrite; // Set register based on condition code.
def  WriteSETCCStore : SchedWrite;

// Integer shifts and rotates.
defm WriteShift : X86SchedWritePair;

// BMI1 BEXTR, BMI2 BZHI
defm WriteBEXTR : X86SchedWritePair;
defm WriteBZHI  : X86SchedWritePair;

// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
def WriteZero : SchedWrite;

// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
defm WriteJump : X86SchedWritePair;

// Floating point. This covers both scalar and vector operations.
def  WriteFLoad  : SchedWrite;
def  WriteFStore : SchedWrite;
def  WriteFMove  : SchedWrite;
defm WriteFAdd   : X86SchedWritePair; // Floating point add/sub/compare.
defm WriteFMul   : X86SchedWritePair; // Floating point multiplication.
defm WriteFDiv   : X86SchedWritePair; // Floating point division.
defm WriteFSqrt  : X86SchedWritePair; // Floating point square root.
defm WriteFRcp   : X86SchedWritePair; // Floating point reciprocal estimate.
defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
defm WriteFMA    : X86SchedWritePair; // Fused Multiply Add.
defm WriteFShuffle  : X86SchedWritePair; // Floating point vector shuffles.
defm WriteFVarShuffle  : X86SchedWritePair; // Floating point vector variable shuffles.
defm WriteFBlend  : X86SchedWritePair; // Floating point vector blends.
defm WriteFVarBlend  : X86SchedWritePair; // Fp vector variable blends.

// FMA Scheduling helper class.
class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }

// Horizontal Add/Sub (float and integer)
defm WriteFHAdd  : X86SchedWritePair;
defm WritePHAdd : X86SchedWritePair;

// Vector integer operations.
def  WriteVecLoad  : SchedWrite;
def  WriteVecStore : SchedWrite;
def  WriteVecMove  : SchedWrite;
defm WriteVecALU   : X86SchedWritePair; // Vector integer ALU op, no logicals.
defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
defm WriteVecIMul  : X86SchedWritePair; // Vector integer multiply.
defm WritePMULLD : X86SchedWritePair; // PMULLD
defm WriteShuffle  : X86SchedWritePair; // Vector shuffles.
defm WriteVarShuffle  : X86SchedWritePair; // Vector variable shuffles.
defm WriteBlend  : X86SchedWritePair; // Vector blends.
defm WriteVarBlend  : X86SchedWritePair; // Vector variable blends.
defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.

// Vector bitwise operations.
// These are often used on both floating point and integer vectors.
defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.

// MOVMSK operations.
def WriteFMOVMSK : SchedWrite;
def WriteVecMOVMSK : SchedWrite;
def WriteMMXMOVMSK : SchedWrite;

// Conversion between integer and float.
defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.

// CRC32 instruction.
defm WriteCRC32 : X86SchedWritePair;

// Strings instructions.
// Packed Compare Implicit Length Strings, Return Mask
defm WritePCmpIStrM : X86SchedWritePair;
// Packed Compare Explicit Length Strings, Return Mask
defm WritePCmpEStrM : X86SchedWritePair;
// Packed Compare Implicit Length Strings, Return Index
defm WritePCmpIStrI : X86SchedWritePair;
// Packed Compare Explicit Length Strings, Return Index
defm WritePCmpEStrI : X86SchedWritePair;

// AES instructions.
defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.

// Carry-less multiplication instructions.
defm WriteCLMul : X86SchedWritePair;

// Catch-all for expensive system instructions.
def WriteSystem : SchedWrite;

// AVX2.
defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
defm WriteFVarShuffle256 : X86SchedWritePair; // Fp 256-bit width variable shuffles.
defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
defm WriteVarShuffle256 : X86SchedWritePair; // 256-bit width vector variable shuffles.
defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.

// Old microcoded instructions that nobody use.
def WriteMicrocoded : SchedWrite;

// Fence instructions.
def WriteFence : SchedWrite;

// Nop, not very useful expect it provides a model for nops!
def WriteNop : SchedWrite;

//===----------------------------------------------------------------------===//
// Instruction Itinerary classes used for X86
def IIC_ALU_MEM     : InstrItinClass;
def IIC_ALU_NONMEM  : InstrItinClass;
def IIC_LEA         : InstrItinClass;
def IIC_LEA_16      : InstrItinClass;
def IIC_MUL8_MEM    : InstrItinClass;
def IIC_MUL8_REG    : InstrItinClass;
def IIC_MUL16_MEM   : InstrItinClass;
def IIC_MUL16_REG   : InstrItinClass;
def IIC_MUL32_MEM   : InstrItinClass;
def IIC_MUL32_REG   : InstrItinClass;
def IIC_MUL64_MEM   : InstrItinClass;
def IIC_MUL64_REG   : InstrItinClass;
// imul by al, ax, eax, tax
def IIC_IMUL8_MEM   : InstrItinClass;
def IIC_IMUL8_REG   : InstrItinClass;
def IIC_IMUL16_MEM  : InstrItinClass;
def IIC_IMUL16_REG  : InstrItinClass;
def IIC_IMUL32_MEM  : InstrItinClass;
def IIC_IMUL32_REG  : InstrItinClass;
def IIC_IMUL64_MEM  : InstrItinClass;
def IIC_IMUL64_REG  : InstrItinClass;
// imul reg by reg|mem
def IIC_IMUL16_RM   : InstrItinClass;
def IIC_IMUL16_RR   : InstrItinClass;
def IIC_IMUL32_RM   : InstrItinClass;
def IIC_IMUL32_RR   : InstrItinClass;
def IIC_IMUL64_RM   : InstrItinClass;
def IIC_IMUL64_RR   : InstrItinClass;
// imul reg = reg/mem * imm
def IIC_IMUL16_RMI  : InstrItinClass;
def IIC_IMUL16_RRI  : InstrItinClass;
def IIC_IMUL32_RMI  : InstrItinClass;
def IIC_IMUL32_RRI  : InstrItinClass;
def IIC_IMUL64_RMI  : InstrItinClass;
def IIC_IMUL64_RRI  : InstrItinClass;
// div
def IIC_DIV8_MEM    : InstrItinClass;
def IIC_DIV8_REG    : InstrItinClass;
def IIC_DIV16_MEM   : InstrItinClass;
def IIC_DIV16_REG   : InstrItinClass;
def IIC_DIV32_MEM   : InstrItinClass;
def IIC_DIV32_REG   : InstrItinClass;
def IIC_DIV64_MEM   : InstrItinClass;
def IIC_DIV64_REG   : InstrItinClass;
// idiv
def IIC_IDIV8_MEM   : InstrItinClass;
def IIC_IDIV8_REG   : InstrItinClass;
def IIC_IDIV16_MEM  : InstrItinClass;
def IIC_IDIV16_REG  : InstrItinClass;
def IIC_IDIV32_MEM  : InstrItinClass;
def IIC_IDIV32_REG  : InstrItinClass;
def IIC_IDIV64_MEM  : InstrItinClass;
def IIC_IDIV64_REG  : InstrItinClass;
// neg/not/inc/dec
def IIC_UNARY_REG   : InstrItinClass;
def IIC_UNARY_MEM   : InstrItinClass;
// add/sub/and/or/xor/sbc/cmp/test
def IIC_BIN_MEM     : InstrItinClass;
def IIC_BIN_NONMEM  : InstrItinClass;
// adc/sbc
def IIC_BIN_CARRY_MEM     : InstrItinClass;
def IIC_BIN_CARRY_NONMEM  : InstrItinClass;
// shift/rotate
def IIC_SR          : InstrItinClass;
// shift double
def IIC_SHD16_REG_IM : InstrItinClass;
def IIC_SHD16_REG_CL : InstrItinClass;
def IIC_SHD16_MEM_IM : InstrItinClass;
def IIC_SHD16_MEM_CL : InstrItinClass;
def IIC_SHD32_REG_IM : InstrItinClass;
def IIC_SHD32_REG_CL : InstrItinClass;
def IIC_SHD32_MEM_IM : InstrItinClass;
def IIC_SHD32_MEM_CL : InstrItinClass;
def IIC_SHD64_REG_IM : InstrItinClass;
def IIC_SHD64_REG_CL : InstrItinClass;
def IIC_SHD64_MEM_IM : InstrItinClass;
def IIC_SHD64_MEM_CL : InstrItinClass;
//sign extension movs
def IIC_MOVSX : InstrItinClass;
def IIC_MOVSX_R16_R8 : InstrItinClass;
def IIC_MOVSX_R16_M8 : InstrItinClass;
//zero extension movs
def IIC_MOVZX : InstrItinClass;
def IIC_MOVZX_R16_R8 : InstrItinClass;
def IIC_MOVZX_R16_M8 : InstrItinClass;

def IIC_REP_MOVS : InstrItinClass;
def IIC_REP_STOS : InstrItinClass;

// SSE scalar/parallel binary operations
def IIC_SSE_ALU_F32S_RR : InstrItinClass;
def IIC_SSE_ALU_F32S_RM : InstrItinClass;
def IIC_SSE_ALU_F64S_RR : InstrItinClass;
def IIC_SSE_ALU_F64S_RM : InstrItinClass;
def IIC_SSE_MUL_F32S_RR : InstrItinClass;
def IIC_SSE_MUL_F32S_RM : InstrItinClass;
def IIC_SSE_MUL_F64S_RR : InstrItinClass;
def IIC_SSE_MUL_F64S_RM : InstrItinClass;
def IIC_SSE_DIV_F32S_RR : InstrItinClass;
def IIC_SSE_DIV_F32S_RM : InstrItinClass;
def IIC_SSE_DIV_F64S_RR : InstrItinClass;
def IIC_SSE_DIV_F64S_RM : InstrItinClass;
def IIC_SSE_ALU_F32P_RR : InstrItinClass;
def IIC_SSE_ALU_F32P_RM : InstrItinClass;
def IIC_SSE_ALU_F64P_RR : InstrItinClass;
def IIC_SSE_ALU_F64P_RM : InstrItinClass;
def IIC_SSE_MUL_F32P_RR : InstrItinClass;
def IIC_SSE_MUL_F32P_RM : InstrItinClass;
def IIC_SSE_MUL_F64P_RR : InstrItinClass;
def IIC_SSE_MUL_F64P_RM : InstrItinClass;
def IIC_SSE_DIV_F32P_RR : InstrItinClass;
def IIC_SSE_DIV_F32P_RM : InstrItinClass;
def IIC_SSE_DIV_F64P_RR : InstrItinClass;
def IIC_SSE_DIV_F64P_RM : InstrItinClass;

def IIC_SSE_COMIS_RR : InstrItinClass;
def IIC_SSE_COMIS_RM : InstrItinClass;

def IIC_SSE_HADDSUB_RR : InstrItinClass;
def IIC_SSE_HADDSUB_RM : InstrItinClass;

def IIC_SSE_BIT_P_RR  : InstrItinClass;
def IIC_SSE_BIT_P_RM  : InstrItinClass;

def IIC_SSE_INTALU_P_RR  : InstrItinClass;
def IIC_SSE_INTALU_P_RM  : InstrItinClass;
def IIC_SSE_INTALUQ_P_RR  : InstrItinClass;
def IIC_SSE_INTALUQ_P_RM  : InstrItinClass;

def IIC_SSE_INTMUL_P_RR : InstrItinClass;
def IIC_SSE_INTMUL_P_RM : InstrItinClass;

def IIC_SSE_INTSH_P_RR : InstrItinClass;
def IIC_SSE_INTSH_P_RM : InstrItinClass;
def IIC_SSE_INTSH_P_RI : InstrItinClass;

def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;

def IIC_SSE_SHUFP : InstrItinClass;
def IIC_SSE_PSHUF_RI : InstrItinClass;
def IIC_SSE_PSHUF_MI : InstrItinClass;

def IIC_SSE_PACK : InstrItinClass;
def IIC_SSE_UNPCK : InstrItinClass;

def IIC_SSE_MOVMSK : InstrItinClass;
def IIC_SSE_MASKMOV : InstrItinClass;

def IIC_SSE_PEXTRW : InstrItinClass;
def IIC_SSE_PINSRW : InstrItinClass;

def IIC_SSE_PABS_RR : InstrItinClass;
def IIC_SSE_PABS_RM : InstrItinClass;

def IIC_SSE_SQRTPS_RR : InstrItinClass;
def IIC_SSE_SQRTPS_RM : InstrItinClass;
def IIC_SSE_SQRTSS_RR : InstrItinClass;
def IIC_SSE_SQRTSS_RM : InstrItinClass;
def IIC_SSE_SQRTPD_RR : InstrItinClass;
def IIC_SSE_SQRTPD_RM : InstrItinClass;
def IIC_SSE_SQRTSD_RR : InstrItinClass;
def IIC_SSE_SQRTSD_RM : InstrItinClass;

def IIC_SSE_RSQRTPS_RR : InstrItinClass;
def IIC_SSE_RSQRTPS_RM : InstrItinClass;
def IIC_SSE_RSQRTSS_RR : InstrItinClass;
def IIC_SSE_RSQRTSS_RM : InstrItinClass;

def IIC_SSE_RCPP_RR : InstrItinClass;
def IIC_SSE_RCPP_RM : InstrItinClass;
def IIC_SSE_RCPS_RR : InstrItinClass;
def IIC_SSE_RCPS_RM : InstrItinClass;

def IIC_SSE_MOV_S_RR : InstrItinClass;
def IIC_SSE_MOV_S_RM : InstrItinClass;
def IIC_SSE_MOV_S_MR : InstrItinClass;

def IIC_SSE_MOVA_P_RR : InstrItinClass;
def IIC_SSE_MOVA_P_RM : InstrItinClass;
def IIC_SSE_MOVA_P_MR : InstrItinClass;

def IIC_SSE_MOVU_P_RR : InstrItinClass;
def IIC_SSE_MOVU_P_RM : InstrItinClass;
def IIC_SSE_MOVU_P_MR : InstrItinClass;

def IIC_SSE_MOVDQ : InstrItinClass;
def IIC_SSE_MOVD_ToGP : InstrItinClass;
def IIC_SSE_MOVQ_RR : InstrItinClass;

def IIC_SSE_MOV_LH : InstrItinClass;

def IIC_SSE_LDDQU : InstrItinClass;

def IIC_SSE_MOVNT : InstrItinClass;

def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
def IIC_SSE_PSHUFB_RR : InstrItinClass;
def IIC_SSE_PSHUFB_RM : InstrItinClass;
def IIC_SSE_PSIGN_RR : InstrItinClass;
def IIC_SSE_PSIGN_RM : InstrItinClass;

def IIC_SSE_PMADD : InstrItinClass;
def IIC_SSE_PMULHRSW : InstrItinClass;
def IIC_SSE_PALIGNRR : InstrItinClass;
def IIC_SSE_PALIGNRM : InstrItinClass;
def IIC_SSE_CVT_PD_RR : InstrItinClass;
def IIC_SSE_CVT_PD_RM : InstrItinClass;
def IIC_SSE_CVT_PS_RR : InstrItinClass;
def IIC_SSE_CVT_PS_RM : InstrItinClass;
def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;

def IIC_AVX_ZERO : InstrItinClass;

def IIC_AES   : InstrItinClass;
def IIC_BLEND_MEM : InstrItinClass;
def IIC_BLEND_NOMEM : InstrItinClass;
def IIC_CBW   : InstrItinClass;
def IIC_CRC32_REG : InstrItinClass;
def IIC_CRC32_MEM : InstrItinClass;
def IIC_SSE_DPPD_RR : InstrItinClass;
def IIC_SSE_DPPD_RM : InstrItinClass;
def IIC_SSE_DPPS_RR : InstrItinClass;
def IIC_SSE_DPPS_RM : InstrItinClass;
def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
def IIC_SSE_INSERTPS_RR : InstrItinClass;
def IIC_SSE_INSERTPS_RM : InstrItinClass;
def IIC_SSE_MPSADBW_RR : InstrItinClass;
def IIC_SSE_MPSADBW_RM : InstrItinClass;
def IIC_SSE_PMULLD_RR : InstrItinClass;
def IIC_SSE_PMULLD_RM : InstrItinClass;
def IIC_SSE_ROUNDPS_REG : InstrItinClass;
def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
def IIC_SSE_ROUNDPD_REG : InstrItinClass;
def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
def IIC_SSE_POPCNT_RR : InstrItinClass;
def IIC_SSE_POPCNT_RM : InstrItinClass;
def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;

//===----------------------------------------------------------------------===//
// Processor instruction itineraries.

// IssueWidth is analogous to the number of decode units. Core and its
// descendents, including Nehalem and SandyBridge have 4 decoders.
// Resources beyond the decoder operate on micro-ops and are bufferred
// so adjacent micro-ops don't directly compete.
//
// MicroOpBufferSize > 1 indicates that RAW dependencies can be
// decoded in the same cycle. The value 32 is a reasonably arbitrary
// number of in-flight instructions.
//
// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
// indicates high latency opcodes. Alternatively, InstrItinData
// entries may be included here to define specific operand
// latencies. Since these latencies are not used for pipeline hazards,
// they do not need to be exact.
//
// The GenericX86Model contains no instruction itineraries
// and disables PostRAScheduler.
class GenericX86Model : SchedMachineModel {
  let IssueWidth = 4;
  let MicroOpBufferSize = 32;
  let LoadLatency = 4;
  let HighLatency = 10;
  let PostRAScheduler = 0;
  let CompleteModel = 0;
}

def GenericModel : GenericX86Model;

// Define a model with the PostRAScheduler enabled.
def GenericPostRAModel : GenericX86Model {
  let PostRAScheduler = 1;
}

OpenPOWER on IntegriCloud