summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86MCCodeEmitter.cpp
blob: f2a38cc6f4b88462b3f04776afb0162439d35fab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-emitter"
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
  const TargetMachine &TM;
  const TargetInstrInfo &TII;
  bool Is64BitMode;
public:
  X86MCCodeEmitter(TargetMachine &tm) 
    : TM(tm), TII(*TM.getInstrInfo()) {
    // FIXME: Get this from the right place.
    Is64BitMode = false;
  }

  ~X86MCCodeEmitter() {}
  
  static unsigned GetX86RegNum(const MCOperand &MO) {
    return X86RegisterInfo::getX86RegNum(MO.getReg());
  }
  
  void EmitByte(unsigned char C, raw_ostream &OS) const {
    OS << (char)C;
  }
  
  void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      EmitByte(Val & 255, OS);
      Val >>= 8;
    }
  }

  void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
                             int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
  
  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                        unsigned RM) {
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    return RM | (RegOpcode << 3) | (Mod << 6);
  }
  
  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        raw_ostream &OS) const {
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
  }
  
  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   raw_ostream &OS) const {
    // SIB byte is in the same format as the ModRMByte...
    EmitByte(ModRMByte(SS, Index, Base), OS);
  }
  
  
  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
                        unsigned RegOpcodeField, intptr_t PCAdj,
                        raw_ostream &OS) const;
  
  void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
  
};

} // end anonymous namespace


MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
                                            TargetMachine &TM) {
  return new X86MCCodeEmitter(TM);
}


/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
/// sign-extended field. 
static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

void X86MCCodeEmitter::
EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
                      int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
  // If this is a simple integer displacement that doesn't require a relocation,
  // emit it now.
  if (!RelocOp) {
    EmitConstant(DispVal, 4, OS);
    return;
  }
  
  assert(0 && "Reloc not handled yet");
#if 0
  // Otherwise, this is something that requires a relocation.  Emit it as such
  // now.
  unsigned RelocType = Is64BitMode ?
  (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
  : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
  if (RelocOp->isGlobal()) {
    // In 64-bit static small code model, we could potentially emit absolute.
    // But it's probably not beneficial. If the MCE supports using RIP directly
    // do it, otherwise fallback to absolute (this is determined by IsPCRel). 
    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
    emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
                      Adj, Indirect);
  } else if (RelocOp->isSymbol()) {
    emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
  } else if (RelocOp->isCPI()) {
    emitConstPoolAddress(RelocOp->getIndex(), RelocType,
                         RelocOp->getOffset(), Adj);
  } else {
    assert(RelocOp->isJTI() && "Unexpected machine operand!");
    emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
  }
#endif
}


void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        intptr_t PCAdj,
                                        raw_ostream &OS) const {
  const MCOperand &Op3 = MI.getOperand(Op+3);
  int DispVal = 0;
  const MCOperand *DispForReloc = 0;
  
  // Figure out what sort of displacement we have to handle here.
  if (Op3.isImm()) {
    DispVal = Op3.getImm();
  } else {
    assert(0 && "relocatable operand");
#if 0
  if (Op3.isGlobal()) {
    DispForReloc = &Op3;
  } else if (Op3.isSymbol()) {
    DispForReloc = &Op3;
  } else if (Op3.isCPI()) {
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
      DispForReloc = &Op3;
    } else {
      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
      DispVal += Op3.getOffset();
    }
  } else {
    assert(Op3.isJTI());
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
      DispForReloc = &Op3;
    } else {
      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
    }
#endif
  }
  
  const MCOperand &Base     = MI.getOperand(Op);
  const MCOperand &Scale    = MI.getOperand(Op+1);
  const MCOperand &IndexReg = MI.getOperand(Op+2);
  unsigned BaseReg = Base.getReg();

  // FIXME: Eliminate!
  bool IsPCRel = false;

  // Is a SIB byte needed?
  // If no BaseReg, issue a RIP relative instruction only if the MCE can 
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.
  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
      IndexReg.getReg() == 0 && 
      (BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
    if (BaseReg == 0 || BaseReg == X86::RIP) {  // Just a displacement?
      // Emit special case [disp32] encoding
      EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
      EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
    } else {
      unsigned BaseRegNo = GetX86RegNum(Base);
      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
        // Emit simple indirect register encoding... [EAX] f.e.
        EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
      } else if (!DispForReloc && isDisp8(DispVal)) {
        // Emit the disp8 encoding... [REG+disp8]
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
        EmitConstant(DispVal, 1, OS);
      } else {
        // Emit the most general non-SIB encoding: [REG+disp32]
        EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
        EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
      }
    }
    return;
  }
    
  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP &&
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
  
  bool ForceDisp32 = false;
  bool ForceDisp8  = false;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
    ForceDisp32 = true;
  } else if (DispForReloc) {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
    ForceDisp32 = true;
  } else if (DispVal == 0 && BaseReg != X86::EBP) {
    // Emit no displacement ModR/M byte
    EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
  } else if (isDisp8(DispVal)) {
    // Emit the disp8 encoding.
    EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
  } else {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
  }
  
  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
  unsigned SS = SSTable[Scale.getImm()];
  
  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel 
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    EmitSIBByte(SS, IndexRegNo, 5, OS);
  } else {
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
  }
  
  // Do we need to output a displacement?
  if (ForceDisp8)
    EmitConstant(DispVal, 1, OS);
  else if (DispVal != 0 || ForceDisp32)
    EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
}


void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
  unsigned Opcode = MI.getOpcode();
  const TargetInstrDesc &Desc = TII.get(Opcode);
  unsigned TSFlags = Desc.TSFlags;

  // FIXME: We should emit the prefixes in exactly the same order as GAS does,
  // in order to provide diffability.

  // Emit the lock opcode prefix as needed.
  if (TSFlags & X86II::LOCK)
    EmitByte(0xF0, OS);
  
  // Emit segment override opcode prefix as needed.
  switch (TSFlags & X86II::SegOvrMask) {
  default: assert(0 && "Invalid segment!");
  case 0: break;  // No segment override!
  case X86II::FS:
    EmitByte(0x64, OS);
    break;
  case X86II::GS:
    EmitByte(0x65, OS);
    break;
  }
  
  // Emit the repeat opcode prefix as needed.
  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    EmitByte(0xF3, OS);
  
  // Emit the operand size opcode prefix as needed.
  if (TSFlags & X86II::OpSize)
    EmitByte(0x66, OS);
  
  // Emit the address size opcode prefix as needed.
  if (TSFlags & X86II::AdSize)
    EmitByte(0x67, OS);
  
  bool Need0FPrefix = false;
  switch (TSFlags & X86II::Op0Mask) {
  default: assert(0 && "Invalid prefix!");
  case 0: break;  // No prefix!
  case X86II::REP: break; // already handled.
  case X86II::TB:  // Two-byte opcode prefix
  case X86II::T8:  // 0F 38
  case X86II::TA:  // 0F 3A
    Need0FPrefix = true;
    break;
  case X86II::TF: // F2 0F 38
    EmitByte(0xF2, OS);
    Need0FPrefix = true;
    break;
  case X86II::XS:   // F3 0F
    EmitByte(0xF3, OS);
    Need0FPrefix = true;
    break;
  case X86II::XD:   // F2 0F
    EmitByte(0xF2, OS);
    Need0FPrefix = true;
    break;
  case X86II::D8: EmitByte(0xD8, OS); break;
  case X86II::D9: EmitByte(0xD9, OS); break;
  case X86II::DA: EmitByte(0xDA, OS); break;
  case X86II::DB: EmitByte(0xDB, OS); break;
  case X86II::DC: EmitByte(0xDC, OS); break;
  case X86II::DD: EmitByte(0xDD, OS); break;
  case X86II::DE: EmitByte(0xDE, OS); break;
  case X86II::DF: EmitByte(0xDF, OS); break;
  }
  
  // Handle REX prefix.
#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
  if (Is64BitMode) {
    if (unsigned REX = X86InstrInfo::determineREX(MI))
      EmitByte(0x40 | REX, OS);
  }
#endif
  
  // 0x0F escape code must be emitted just before the opcode.
  if (Need0FPrefix)
    EmitByte(0x0F, OS);
  
  // FIXME: Pull this up into previous switch if REX can be moved earlier.
  switch (TSFlags & X86II::Op0Mask) {
  case X86II::TF:    // F2 0F 38
  case X86II::T8:    // 0F 38
    EmitByte(0x38, OS);
    break;
  case X86II::TA:    // 0F 3A
    EmitByte(0x3A, OS);
    break;
  }
  
  // If this is a two-address instruction, skip one of the register operands.
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = 0;
  if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
    ++CurOp;
  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
    --NumOps;
  
  // FIXME: Can we kill off MRMInitReg??
  
  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
  switch (TSFlags & X86II::FormMask) {
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
      assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::RawFrm: {
    EmitByte(BaseOpcode, OS);
    
    if (CurOp == NumOps)
      break;
    
    assert(0 && "Unimpl RawFrm expr");
    break;
  }
      
  case X86II::AddRegFrm: {
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
    if (CurOp == NumOps)
      break;

    const MCOperand &MO1 = MI.getOperand(CurOp++);
    if (MO1.isImm()) {
      unsigned Size = X86II::getSizeOfImm(TSFlags);
      EmitConstant(MO1.getImm(), Size, OS);
      break;
    }

    assert(0 && "Unimpl AddRegFrm expr");
    break;
  }
      
  case X86II::MRMDestReg:
    EmitByte(BaseOpcode, OS);
    EmitRegModRMByte(MI.getOperand(CurOp),
                     GetX86RegNum(MI.getOperand(CurOp+1)), OS);
    CurOp += 2;
    if (CurOp != NumOps)
      EmitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(TSFlags), OS);
    break;
  
  case X86II::MRMDestMem:
    EmitByte(BaseOpcode, OS);
    EmitMemModRMByte(MI, CurOp,
                     GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
                     0, OS);
    CurOp +=  X86AddrNumOperands + 1;
    if (CurOp != NumOps)
      EmitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(TSFlags), OS);
    break;
      
  case X86II::MRMSrcReg:
    EmitByte(BaseOpcode, OS);
    EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
                     OS);
    CurOp += 2;
    if (CurOp != NumOps)
      EmitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(TSFlags), OS);
    break;
    
  case X86II::MRMSrcMem: {
    EmitByte(BaseOpcode, OS);

    // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    int AddrOperands;
    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
      AddrOperands = X86AddrNumOperands - 1; // No segment register
    else
      AddrOperands = X86AddrNumOperands;
    
    // FIXME: What is this actually doing?
    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
       X86II::getSizeOfImm(TSFlags) : 0;
    
    EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
                     PCAdj, OS);
    CurOp += AddrOperands + 1;
    if (CurOp != NumOps)
      EmitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(TSFlags), OS);
    break;
  }
      
  }
  
#ifndef NDEBUG
  if (!Desc.isVariadic() && CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}
OpenPOWER on IntegriCloud