summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86InterleavedAccess.cpp
blob: 6649308aa87e1748040ae538159d04a59c28ecc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===--------- X86InterleavedAccess.cpp ----------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--------------------------------------------------------------------===//
///
/// \file
/// This file contains the X86 implementation of the interleaved accesses
/// optimization generating X86-specific instructions/intrinsics for
/// interleaved access groups.
///
//===--------------------------------------------------------------------===//

#include "X86TargetMachine.h"
#include "llvm/Analysis/VectorUtils.h"

using namespace llvm;

namespace {
/// \brief This class holds necessary information to represent an interleaved
/// access group and supports utilities to lower the group into
/// X86-specific instructions/intrinsics.
///  E.g. A group of interleaving access loads (Factor = 2; accessing every
///       other element)
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
class X86InterleavedAccessGroup {
  /// \brief Reference to the wide-load instruction of an interleaved access
  /// group.
  Instruction *const Inst;

  /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
  ArrayRef<ShuffleVectorInst *> Shuffles;

  /// \brief Reference to the starting index of each user-shuffle.
  ArrayRef<unsigned> Indices;

  /// \brief Reference to the interleaving stride in terms of elements.
  const unsigned Factor;

  /// \brief Reference to the underlying target.
  const X86Subtarget &Subtarget;

  const DataLayout &DL;

  IRBuilder<> &Builder;

  /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
  /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
  void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
                 SmallVectorImpl<Instruction *> &DecomposedVectors);

  /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and
  /// returns the transposed-vectors in \p TransposedVectors.
  /// E.g.
  /// InputVectors:
  ///   In-V0 = p1, p2, p3, p4
  ///   In-V1 = q1, q2, q3, q4
  ///   In-V2 = r1, r2, r3, r4
  ///   In-V3 = s1, s2, s3, s4
  /// OutputVectors:
  ///   Out-V0 = p1, q1, r1, s1
  ///   Out-V1 = p2, q2, r2, s2
  ///   Out-V2 = p3, q3, r3, s3
  ///   Out-V3 = P4, q4, r4, s4
  void transpose_4x4(ArrayRef<Instruction *> InputVectors,
                     SmallVectorImpl<Value *> &TransposedMatrix);
  void interleave8bit_32x4(ArrayRef<Instruction *> InputVectors,
                          SmallVectorImpl<Value *> &TransposedMatrix);
public:
  /// In order to form an interleaved access group X86InterleavedAccessGroup
  /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
  /// \p Shuffs, reference to the first indices of each interleaved-vector
  /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
  /// X86-specific instructions/intrinsics it also requires the underlying
  /// target information \p STarget.
  explicit X86InterleavedAccessGroup(Instruction *I,
                                     ArrayRef<ShuffleVectorInst *> Shuffs,
                                     ArrayRef<unsigned> Ind, const unsigned F,
                                     const X86Subtarget &STarget,
                                     IRBuilder<> &B)
      : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
        DL(Inst->getModule()->getDataLayout()), Builder(B) {}

  /// \brief Returns true if this interleaved access group can be lowered into
  /// x86-specific instructions/intrinsics, false otherwise.
  bool isSupported() const;

  /// \brief Lowers this interleaved access group into X86-specific
  /// instructions/intrinsics.
  bool lowerIntoOptimizedSequence();
};
} // end anonymous namespace

bool X86InterleavedAccessGroup::isSupported() const {
  VectorType *ShuffleVecTy = Shuffles[0]->getType();
  Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
  unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
  unsigned SupportedNumElem = 4;
  if (ShuffleElemSize == 8)
    SupportedNumElem = 32;
  unsigned WideInstSize;

  // Currently, lowering is supported for the following vectors:
  // 1. 4-element vectors of 64 bits on AVX.
  // 2. 32-element vectors of 8 bits on AVX.
  if (isa<LoadInst>(Inst)) {
    if (DL.getTypeSizeInBits(ShuffleVecTy) !=
        SupportedNumElem * ShuffleElemSize)
      return false;

    WideInstSize = DL.getTypeSizeInBits(Inst->getType());
  } else
    WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());

  if (DL.getTypeSizeInBits(ShuffleEltTy) == 8 && !isa<StoreInst>(Inst))
    return false;

  if (!Subtarget.hasAVX() || Factor != 4 ||
      (ShuffleElemSize != 64 && ShuffleElemSize != 8) ||
      WideInstSize != (Factor * ShuffleElemSize * SupportedNumElem))
    return false;

  return true;
}

void X86InterleavedAccessGroup::decompose(
    Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
    SmallVectorImpl<Instruction *> &DecomposedVectors) {

  assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
         "Expected Load or Shuffle");

  Type *VecTy = VecInst->getType();
  (void)VecTy;
  assert(VecTy->isVectorTy() &&
         DL.getTypeSizeInBits(VecTy) >=
             DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
         "Invalid Inst-size!!!");

  if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
    Value *Op0 = SVI->getOperand(0);
    Value *Op1 = SVI->getOperand(1);

    // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
    for (unsigned i = 0; i < NumSubVectors; ++i)
      DecomposedVectors.push_back(
          cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
              Op0, Op1,
              createSequentialMask(Builder, Indices[i],
                                   SubVecTy->getVectorNumElements(), 0))));
    return;
  }

  // Decompose the load instruction.
  LoadInst *LI = cast<LoadInst>(VecInst);
  Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
  Value *VecBasePtr =
      Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);

  // Generate N loads of T type.
  for (unsigned i = 0; i < NumSubVectors; i++) {
    // TODO: Support inbounds GEP.
    Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
    Instruction *NewLoad =
        Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
    DecomposedVectors.push_back(NewLoad);
  }
}

//  Create shuffle mask for concatenation of two half vectors.
//  Low = false:  mask generated for the shuffle
//  shuffle(VEC1,VEC2,{NumElement/2, NumElement/2+1, NumElement/2+2...,
//                    NumElement-1, NumElement+NumElement/2,
//                    NumElement+NumElement/2+1..., 2*NumElement-1})
//  = concat(high_half(VEC1),high_half(VEC2))
//  Low = true:  mask generated for the shuffle
//  shuffle(VEC1,VEC2,{0,1,2,...,NumElement/2-1,NumElement,
//                    NumElement+1...,NumElement+NumElement/2-1})
//  = concat(low_half(VEC1),low_half(VEC2))
static void createConcatShuffleMask(int NumElements,
                                    SmallVectorImpl<uint32_t> &Mask, bool Low) {
  int NumHalfElements = NumElements / 2;
  int Offset = Low ? 0 : NumHalfElements;
  for (int i = 0; i < NumHalfElements; ++i)
    Mask.push_back(i + Offset);
  for (int i = 0; i < NumHalfElements; ++i)
    Mask.push_back(i + Offset + NumElements);
}

void X86InterleavedAccessGroup::interleave8bit_32x4(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {

  // Example: Assuming we start from the following vectors:
  // Matrix[0]= c0 c1 c2 c3 c4 ... c31
  // Matrix[1]= m0 m1 m2 m3 m4 ... m31
  // Matrix[2]= y0 y1 y2 y3 y4 ... y31
  // Matrix[3]= k0 k1 k2 k3 k4 ... k31

  TransposedMatrix.resize(4);

  SmallVector<uint32_t, 32> MaskHighTemp;
  SmallVector<uint32_t, 32> MaskLowTemp;
  SmallVector<uint32_t, 32> MaskHighTemp1;
  SmallVector<uint32_t, 32> MaskLowTemp1;
  SmallVector<uint32_t, 32> MaskHighTemp2;
  SmallVector<uint32_t, 32> MaskLowTemp2;
  SmallVector<uint32_t, 32> ConcatLow;
  SmallVector<uint32_t, 32> ConcatHigh;

  // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
  // shuffle pattern.

  createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskHighTemp, false, false);
  createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskLowTemp, true, false);
  ArrayRef<uint32_t> MaskHigh = makeArrayRef(MaskHighTemp);
  ArrayRef<uint32_t> MaskLow = makeArrayRef(MaskLowTemp);

  // ConcatHigh and ConcatLow built in the vperm2i128 and vinserti128 X86
  // shuffle pattern.

  createConcatShuffleMask(32, ConcatLow, true);
  createConcatShuffleMask(32, ConcatHigh, false);
  ArrayRef<uint32_t> MaskConcatLow = makeArrayRef(ConcatLow);
  ArrayRef<uint32_t> MaskConcatHigh = makeArrayRef(ConcatHigh);

  // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
  // shuffle pattern.

  createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskLowTemp1, true, false);
  createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskHighTemp1, false, false);
  scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskHighTemp1), MaskHighTemp2);
  scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskLowTemp1), MaskLowTemp2);
  ArrayRef<uint32_t> MaskHighWord = makeArrayRef(MaskHighTemp2);
  ArrayRef<uint32_t> MaskLowWord = makeArrayRef(MaskLowTemp2);

  // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23
  // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
  // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23
  // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31

  Value *IntrVec1Low =
      Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
  Value *IntrVec1High =
      Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
  Value *IntrVec2Low =
      Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
  Value *IntrVec2High =
      Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);

  // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
  // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19
  // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27

  Value *High =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
  Value *High1 =
      Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskHighWord);
  Value *Low =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
  Value *Low1 =
      Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskLowWord);

  // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk4  cmyk5  cmyk6   cmyk7
  // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk12 cmyk13 cmyk14  cmyk15
  // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31

  TransposedMatrix[0] = Builder.CreateShuffleVector(Low, High, MaskConcatLow);
  TransposedMatrix[1] = Builder.CreateShuffleVector(Low1, High1, MaskConcatLow);
  TransposedMatrix[2] = Builder.CreateShuffleVector(Low, High, MaskConcatHigh);
  TransposedMatrix[3] =
      Builder.CreateShuffleVector(Low1, High1, MaskConcatHigh);
}

void X86InterleavedAccessGroup::transpose_4x4(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  assert(Matrix.size() == 4 && "Invalid matrix size");
  TransposedMatrix.resize(4);

  // dst = src1[0,1],src2[0,1]
  uint32_t IntMask1[] = {0, 1, 4, 5};
  ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
  Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[2,3],src2[2,3]
  uint32_t IntMask2[] = {2, 3, 6, 7};
  Mask = makeArrayRef(IntMask2, 4);
  Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[0],src2[0],src1[2],src2[2]
  uint32_t IntMask3[] = {0, 4, 2, 6};
  Mask = makeArrayRef(IntMask3, 4);
  TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);

  // dst = src1[1],src2[1],src1[3],src2[3]
  uint32_t IntMask4[] = {1, 5, 3, 7};
  Mask = makeArrayRef(IntMask4, 4);
  TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
}

// Lowers this interleaved access group into X86-specific
// instructions/intrinsics.
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
  SmallVector<Instruction *, 4> DecomposedVectors;
  SmallVector<Value *, 4> TransposedVectors;
  VectorType *ShuffleTy = Shuffles[0]->getType();

  if (isa<LoadInst>(Inst)) {
    // Try to generate target-sized register(/instruction).
    decompose(Inst, Factor, ShuffleTy, DecomposedVectors);

    // Perform matrix-transposition in order to compute interleaved
    // results by generating some sort of (optimized) target-specific
    // instructions.
    transpose_4x4(DecomposedVectors, TransposedVectors);

    // Now replace the unoptimized-interleaved-vectors with the
    // transposed-interleaved vectors.
    for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
      Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);

    return true;
  }

  Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
  unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;

  // Lower the interleaved stores:
  //   1. Decompose the interleaved wide shuffle into individual shuffle
  //   vectors.
  decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
            DecomposedVectors);

  //   2. Transpose the interleaved-vectors into vectors of contiguous
  //      elements.
  switch (NumSubVecElems) {
  case 4:
    transpose_4x4(DecomposedVectors, TransposedVectors);
    break;
  case 32:
    interleave8bit_32x4(DecomposedVectors, TransposedVectors);
    break;
  default:
    return false;
  }

  //   3. Concatenate the contiguous-vectors back into a wide vector.
  Value *WideVec = concatenateVectors(Builder, TransposedVectors);

  //   4. Generate a store instruction for wide-vec.
  StoreInst *SI = cast<StoreInst>(Inst);
  Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
                             SI->getAlignment());

  return true;
}

// Lower interleaved load(s) into target specific instructions/
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
// number of shuffles and ISA.
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
bool X86TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  // Create an interleaved access group.
  IRBuilder<> Builder(LI);
  X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}

bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
                                              ShuffleVectorInst *SVI,
                                              unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
         "Invalid interleaved store");

  // Holds the indices of SVI that correspond to the starting index of each
  // interleaved shuffle.
  SmallVector<unsigned, 4> Indices;
  auto Mask = SVI->getShuffleMask();
  for (unsigned i = 0; i < Factor; i++)
    Indices.push_back(Mask[i]);

  ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);

  // Create an interleaved access group.
  IRBuilder<> Builder(SI);
  X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}
OpenPOWER on IntegriCloud