summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
blob: 70afec14b51a0e8131c215144eb98861d9515095 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//
//===----------------------------------------------------------------------===//

#include "HexagonFrameLowering.h"
#include "HexagonBlockRanges.h"
#include "HexagonInstrInfo.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <map>
#include <utility>
#include <vector>

#define DEBUG_TYPE "hexagon-pei"

// Hexagon stack frame layout as defined by the ABI:
//
//                                                       Incoming arguments
//                                                       passed via stack
//                                                                      |
//                                                                      |
//        SP during function's                 FP during function's     |
//    +-- runtime (top of stack)               runtime (bottom) --+     |
//    |                                                           |     |
// --++---------------------+------------------+-----------------++-+-------
//   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
//   |   called functions   |  local objects   |  local objects  |FP|
// --+----------------------+------------------+-----------------+--+-------
//    <-    size known    -> <- size unknown -> <- size known  ->
//
// Low address                                                 High address
//
// <--- stack growth
//
//
// - In any circumstances, the outgoing function arguments are always accessi-
//   ble using the SP, and the incoming arguments are accessible using the FP.
// - If the local objects are not aligned, they can always be accessed using
//   the FP.
// - If there are no variable-sized objects, the local objects can always be
//   accessed using the SP, regardless whether they are aligned or not. (The
//   alignment padding will be at the bottom of the stack (highest address),
//   and so the offset with respect to the SP will be known at the compile-
//   -time.)
//
// The only complication occurs if there are both, local aligned objects, and
// dynamically allocated (variable-sized) objects. The alignment pad will be
// placed between the FP and the local objects, thus preventing the use of the
// FP to access the local objects. At the same time, the variable-sized objects
// will be between the SP and the local objects, thus introducing an unknown
// distance from the SP to the locals.
//
// To avoid this problem, a new register is created that holds the aligned
// address of the bottom of the stack, referred in the sources as AP (aligned
// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
// that aligns AP to the required boundary (a maximum of the alignments of
// all stack objects, fixed- and variable-sized). All local objects[1] will
// then use AP as the base pointer.
// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
// their name from being allocated at fixed locations on the stack, relative
// to the FP. In the presence of dynamic allocation and local alignment, such
// objects can only be accessed through the FP.
//
// Illustration of the AP:
//                                                                FP --+
//                                                                     |
// ---------------+---------------------+-----+-----------------------++-+--
//   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
//   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
// ---------------+---------------------+-----+-----------------+-----+--+--
//                                      |<-- Multiple of the -->|
//                                           stack alignment    +-- AP
//
// The AP is set up at the beginning of the function. Since it is not a dedi-
// cated (reserved) register, it needs to be kept live throughout the function
// to be available as the base register for local object accesses.
// Normally, an address of a stack objects is obtained by a pseudo-instruction
// PS_fi. To access local objects with the AP register present, a different
// pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
// argument compared to PS_fi: the first input register is the AP register.
// This keeps the register live between its definition and its uses.

// The AP register is originally set up using pseudo-instruction PS_aligna:
//   AP = PS_aligna A
// where
//   A  - required stack alignment
// The alignment value must be the maximum of all alignments required by
// any stack object.

// The dynamic allocation uses a pseudo-instruction PS_alloca:
//   Rd = PS_alloca Rs, A
// where
//   Rd - address of the allocated space
//   Rs - minimum size (the actual allocated can be larger to accommodate
//        alignment)
//   A  - required alignment

using namespace llvm;

static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
    cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));

static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
    cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
    cl::ZeroOrMore);

static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
    cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
    cl::init(6), cl::ZeroOrMore);

static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
    cl::Hidden, cl::desc("Specify Os spill func threshold"),
    cl::init(1), cl::ZeroOrMore);

static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
    cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
    cl::init(false), cl::ZeroOrMore);

static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
    cl::init(true), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Enable stack frame shrink wrapping"));

static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
    cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Max count of stack frame shrink-wraps"));

static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
    cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
    cl::init(false), cl::ZeroOrMore);

static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
    cl::Hidden, cl::desc("Refrain from using FP whenever possible"));

static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
    cl::init(true), cl::desc("Optimize spill slots"));

#ifndef NDEBUG
static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
    cl::init(std::numeric_limits<unsigned>::max()));
static unsigned SpillOptCount = 0;
#endif

namespace llvm {

  void initializeHexagonCallFrameInformationPass(PassRegistry&);
  FunctionPass *createHexagonCallFrameInformation();

} // end namespace llvm

namespace {

  class HexagonCallFrameInformation : public MachineFunctionPass {
  public:
    static char ID;

    HexagonCallFrameInformation() : MachineFunctionPass(ID) {
      PassRegistry &PR = *PassRegistry::getPassRegistry();
      initializeHexagonCallFrameInformationPass(PR);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }
  };

  char HexagonCallFrameInformation::ID = 0;

} // end anonymous namespace

bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
  auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
  bool NeedCFI = MF.getMMI().hasDebugInfo() ||
                 MF.getFunction().needsUnwindTableEntry();

  if (!NeedCFI)
    return false;
  HFI.insertCFIInstructions(MF);
  return true;
}

INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
                "Hexagon call frame information", false, false)

FunctionPass *llvm::createHexagonCallFrameInformation() {
  return new HexagonCallFrameInformation();
}

/// Map a register pair Reg to the subregister that has the greater "number",
/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
static unsigned getMax32BitSubRegister(unsigned Reg,
                                       const TargetRegisterInfo &TRI,
                                       bool hireg = true) {
    if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
      return Reg;

    unsigned RegNo = 0;
    for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
      if (hireg) {
        if (*SubRegs > RegNo)
          RegNo = *SubRegs;
      } else {
        if (!RegNo || *SubRegs < RegNo)
          RegNo = *SubRegs;
      }
    }
    return RegNo;
}

/// Returns the callee saved register with the largest id in the vector.
static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
                                     const TargetRegisterInfo &TRI) {
    static_assert(Hexagon::R1 > 0,
                  "Assume physical registers are encoded as positive integers");
    if (CSI.empty())
      return 0;

    unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
    for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
      unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
      if (Reg > Max)
        Max = Reg;
    }
    return Max;
}

/// Checks if the basic block contains any instruction that needs a stack
/// frame to be already in place.
static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
                            const HexagonRegisterInfo &HRI) {
    for (auto &I : MBB) {
      const MachineInstr *MI = &I;
      if (MI->isCall())
        return true;
      unsigned Opc = MI->getOpcode();
      switch (Opc) {
        case Hexagon::PS_alloca:
        case Hexagon::PS_aligna:
          return true;
        default:
          break;
      }
      // Check individual operands.
      for (const MachineOperand &MO : MI->operands()) {
        // While the presence of a frame index does not prove that a stack
        // frame will be required, all frame indexes should be within alloc-
        // frame/deallocframe. Otherwise, the code that translates a frame
        // index into an offset would have to be aware of the placement of
        // the frame creation/destruction instructions.
        if (MO.isFI())
          return true;
        if (MO.isReg()) {
          Register R = MO.getReg();
          // Virtual registers will need scavenging, which then may require
          // a stack slot.
          if (Register::isVirtualRegister(R))
            return true;
          for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
            if (CSR[*S])
              return true;
          continue;
        }
        if (MO.isRegMask()) {
          // A regmask would normally have all callee-saved registers marked
          // as preserved, so this check would not be needed, but in case of
          // ever having other regmasks (for other calling conventions),
          // make sure they would be processed correctly.
          const uint32_t *BM = MO.getRegMask();
          for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
            unsigned R = x;
            // If this regmask does not preserve a CSR, a frame will be needed.
            if (!(BM[R/32] & (1u << (R%32))))
              return true;
          }
        }
      }
    }
    return false;
}

  /// Returns true if MBB has a machine instructions that indicates a tail call
  /// in the block.
static bool hasTailCall(const MachineBasicBlock &MBB) {
    MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
    if (I == MBB.end())
      return false;
    unsigned RetOpc = I->getOpcode();
    return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
}

/// Returns true if MBB contains an instruction that returns.
static bool hasReturn(const MachineBasicBlock &MBB) {
    for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
      if (I->isReturn())
        return true;
    return false;
}

/// Returns the "return" instruction from this block, or nullptr if there
/// isn't any.
static MachineInstr *getReturn(MachineBasicBlock &MBB) {
    for (auto &I : MBB)
      if (I.isReturn())
        return &I;
    return nullptr;
}

static bool isRestoreCall(unsigned Opc) {
    switch (Opc) {
      case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
      case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
      case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
      case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
      case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
      case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
      case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
      case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
        return true;
    }
    return false;
}

static inline bool isOptNone(const MachineFunction &MF) {
    return MF.getFunction().hasOptNone() ||
           MF.getTarget().getOptLevel() == CodeGenOpt::None;
}

static inline bool isOptSize(const MachineFunction &MF) {
    const Function &F = MF.getFunction();
    return F.hasOptSize() && !F.hasMinSize();
}

static inline bool isMinSize(const MachineFunction &MF) {
    return MF.getFunction().hasMinSize();
}

/// Implements shrink-wrapping of the stack frame. By default, stack frame
/// is created in the function entry block, and is cleaned up in every block
/// that returns. This function finds alternate blocks: one for the frame
/// setup (prolog) and one for the cleanup (epilog).
void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
      MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
  static unsigned ShrinkCounter = 0;

  if (ShrinkLimit.getPosition()) {
    if (ShrinkCounter >= ShrinkLimit)
      return;
    ShrinkCounter++;
  }

  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  MachineDominatorTree MDT;
  MDT.runOnMachineFunction(MF);
  MachinePostDominatorTree MPT;
  MPT.runOnMachineFunction(MF);

  using UnsignedMap = DenseMap<unsigned, unsigned>;
  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;

  UnsignedMap RPO;
  RPOTType RPOT(&MF);
  unsigned RPON = 0;
  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
    RPO[(*I)->getNumber()] = RPON++;

  // Don't process functions that have loops, at least for now. Placement
  // of prolog and epilog must take loop structure into account. For simpli-
  // city don't do it right now.
  for (auto &I : MF) {
    unsigned BN = RPO[I.getNumber()];
    for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
      // If found a back-edge, return.
      if (RPO[(*SI)->getNumber()] <= BN)
        return;
    }
  }

  // Collect the set of blocks that need a stack frame to execute. Scan
  // each block for uses/defs of callee-saved registers, calls, etc.
  SmallVector<MachineBasicBlock*,16> SFBlocks;
  BitVector CSR(Hexagon::NUM_TARGET_REGS);
  for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
    for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
      CSR[*S] = true;

  for (auto &I : MF)
    if (needsStackFrame(I, CSR, HRI))
      SFBlocks.push_back(&I);

  LLVM_DEBUG({
    dbgs() << "Blocks needing SF: {";
    for (auto &B : SFBlocks)
      dbgs() << " " << printMBBReference(*B);
    dbgs() << " }\n";
  });
  // No frame needed?
  if (SFBlocks.empty())
    return;

  // Pick a common dominator and a common post-dominator.
  MachineBasicBlock *DomB = SFBlocks[0];
  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
    DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
    if (!DomB)
      break;
  }
  MachineBasicBlock *PDomB = SFBlocks[0];
  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
    PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
    if (!PDomB)
      break;
  }
  LLVM_DEBUG({
    dbgs() << "Computed dom block: ";
    if (DomB)
      dbgs() << printMBBReference(*DomB);
    else
      dbgs() << "<null>";
    dbgs() << ", computed pdom block: ";
    if (PDomB)
      dbgs() << printMBBReference(*PDomB);
    else
      dbgs() << "<null>";
    dbgs() << "\n";
  });
  if (!DomB || !PDomB)
    return;

  // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
  if (!MDT.dominates(DomB, PDomB)) {
    LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
    return;
  }
  if (!MPT.dominates(PDomB, DomB)) {
    LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
    return;
  }

  // Finally, everything seems right.
  PrologB = DomB;
  EpilogB = PDomB;
}

/// Perform most of the PEI work here:
/// - saving/restoring of the callee-saved registers,
/// - stack frame creation and destruction.
/// Normally, this work is distributed among various functions, but doing it
/// in one place allows shrink-wrapping of the stack frame.
void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
                                        MachineBasicBlock &MBB) const {
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  MachineFrameInfo &MFI = MF.getFrameInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();

  MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
  if (EnableShrinkWrapping)
    findShrunkPrologEpilog(MF, PrologB, EpilogB);

  bool PrologueStubs = false;
  insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
  insertPrologueInBlock(*PrologB, PrologueStubs);
  updateEntryPaths(MF, *PrologB);

  if (EpilogB) {
    insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
    insertEpilogueInBlock(*EpilogB);
  } else {
    for (auto &B : MF)
      if (B.isReturnBlock())
        insertCSRRestoresInBlock(B, CSI, HRI);

    for (auto &B : MF)
      if (B.isReturnBlock())
        insertEpilogueInBlock(B);

    for (auto &B : MF) {
      if (B.empty())
        continue;
      MachineInstr *RetI = getReturn(B);
      if (!RetI || isRestoreCall(RetI->getOpcode()))
        continue;
      for (auto &R : CSI)
        RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
    }
  }

  if (EpilogB) {
    // If there is an epilog block, it may not have a return instruction.
    // In such case, we need to add the callee-saved registers as live-ins
    // in all blocks on all paths from the epilog to any return block.
    unsigned MaxBN = MF.getNumBlockIDs();
    BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
    updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
  }
}

/// Returns true if the target can safely skip saving callee-saved registers
/// for noreturn nounwind functions.
bool HexagonFrameLowering::enableCalleeSaveSkip(
    const MachineFunction &MF) const {
  const auto &F = MF.getFunction();
  assert(F.hasFnAttribute(Attribute::NoReturn) &&
         F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
         !F.getFunction().hasFnAttribute(Attribute::UWTable));
  (void)F;

  // No need to save callee saved registers if the function does not return.
  return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
}

// Helper function used to determine when to eliminate the stack frame for
// functions marked as noreturn and when the noreturn-stack-elim options are
// specified. When both these conditions are true, then a FP may not be needed
// if the function makes a call. It is very similar to enableCalleeSaveSkip,
// but it used to check if the allocframe can be eliminated as well.
static bool enableAllocFrameElim(const MachineFunction &MF) {
  const auto &F = MF.getFunction();
  const auto &MFI = MF.getFrameInfo();
  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
  assert(!MFI.hasVarSizedObjects() &&
         !HST.getRegisterInfo()->needsStackRealignment(MF));
  return F.hasFnAttribute(Attribute::NoReturn) &&
    F.hasFnAttribute(Attribute::NoUnwind) &&
    !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
    MFI.getStackSize() == 0;
}

void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
      bool PrologueStubs) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();
  auto &HRI = *HST.getRegisterInfo();

  unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment());

  // Calculate the total stack frame size.
  // Get the number of bytes to allocate from the FrameInfo.
  unsigned FrameSize = MFI.getStackSize();
  // Round up the max call frame size to the max alignment on the stack.
  unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
  MFI.setMaxCallFrameSize(MaxCFA);

  FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
  MFI.setStackSize(FrameSize);

  bool AlignStack = (MaxAlign > getStackAlignment());

  // Get the number of bytes to allocate from the FrameInfo.
  unsigned NumBytes = MFI.getStackSize();
  unsigned SP = HRI.getStackRegister();
  unsigned MaxCF = MFI.getMaxCallFrameSize();
  MachineBasicBlock::iterator InsertPt = MBB.begin();

  SmallVector<MachineInstr *, 4> AdjustRegs;
  for (auto &MBB : MF)
    for (auto &MI : MBB)
      if (MI.getOpcode() == Hexagon::PS_alloca)
        AdjustRegs.push_back(&MI);

  for (auto MI : AdjustRegs) {
    assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
    expandAlloca(MI, HII, SP, MaxCF);
    MI->eraseFromParent();
  }

  DebugLoc dl = MBB.findDebugLoc(InsertPt);

  if (hasFP(MF)) {
    insertAllocframe(MBB, InsertPt, NumBytes);
    if (AlignStack) {
      BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
          .addReg(SP)
          .addImm(-int64_t(MaxAlign));
    }
    // If the stack-checking is enabled, and we spilled the callee-saved
    // registers inline (i.e. did not use a spill function), then call
    // the stack checker directly.
    if (EnableStackOVFSanitizer && !PrologueStubs)
      BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
             .addExternalSymbol("__runtime_stack_check");
  } else if (NumBytes > 0) {
    assert(alignTo(NumBytes, 8) == NumBytes);
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
      .addReg(SP)
      .addImm(-int(NumBytes));
  }
}

void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
  MachineFunction &MF = *MBB.getParent();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();
  auto &HRI = *HST.getRegisterInfo();
  unsigned SP = HRI.getStackRegister();

  MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
  DebugLoc dl = MBB.findDebugLoc(InsertPt);

  if (!hasFP(MF)) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    if (unsigned NumBytes = MFI.getStackSize()) {
      BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
        .addReg(SP)
        .addImm(NumBytes);
    }
    return;
  }

  MachineInstr *RetI = getReturn(MBB);
  unsigned RetOpc = RetI ? RetI->getOpcode() : 0;

  // Handle EH_RETURN.
  if (RetOpc == Hexagon::EH_RETURN_JMPR) {
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
        .addDef(Hexagon::D15)
        .addReg(Hexagon::R30);
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
        .addReg(SP)
        .addReg(Hexagon::R28);
    return;
  }

  // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
  // frame instruction if we encounter it.
  if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
      RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
      RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
      RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
    MachineBasicBlock::iterator It = RetI;
    ++It;
    // Delete all instructions after the RESTORE (except labels).
    while (It != MBB.end()) {
      if (!It->isLabel())
        It = MBB.erase(It);
      else
        ++It;
    }
    return;
  }

  // It is possible that the restoring code is a call to a library function.
  // All of the restore* functions include "deallocframe", so we need to make
  // sure that we don't add an extra one.
  bool NeedsDeallocframe = true;
  if (!MBB.empty() && InsertPt != MBB.begin()) {
    MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
    unsigned COpc = PrevIt->getOpcode();
    if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
        COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
        COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
        COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
        COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
      NeedsDeallocframe = false;
  }

  if (!NeedsDeallocframe)
    return;
  // If the returning instruction is PS_jmpret, replace it with dealloc_return,
  // otherwise just add deallocframe. The function could be returning via a
  // tail call.
  if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
      .addDef(Hexagon::D15)
      .addReg(Hexagon::R30);
    return;
  }
  unsigned NewOpc = Hexagon::L4_return;
  MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
      .addDef(Hexagon::D15)
      .addReg(Hexagon::R30);
  // Transfer the function live-out registers.
  NewI->copyImplicitOps(MF, *RetI);
  MBB.erase(RetI);
}

void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
      MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
  MachineFunction &MF = *MBB.getParent();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();
  auto &HRI = *HST.getRegisterInfo();

  // Check for overflow.
  // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
  const unsigned int ALLOCFRAME_MAX = 16384;

  // Create a dummy memory operand to avoid allocframe from being treated as
  // a volatile memory reference.
  auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
                                      MachineMemOperand::MOStore, 4, 4);

  DebugLoc dl = MBB.findDebugLoc(InsertPt);
  unsigned SP = HRI.getStackRegister();

  if (NumBytes >= ALLOCFRAME_MAX) {
    // Emit allocframe(#0).
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
      .addDef(SP)
      .addReg(SP)
      .addImm(0)
      .addMemOperand(MMO);

    // Subtract the size from the stack pointer.
    unsigned SP = HRI.getStackRegister();
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
      .addReg(SP)
      .addImm(-int(NumBytes));
  } else {
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
      .addDef(SP)
      .addReg(SP)
      .addImm(NumBytes)
      .addMemOperand(MMO);
  }
}

void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
      MachineBasicBlock &SaveB) const {
  SetVector<unsigned> Worklist;

  MachineBasicBlock &EntryB = MF.front();
  Worklist.insert(EntryB.getNumber());

  unsigned SaveN = SaveB.getNumber();
  auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();

  for (unsigned i = 0; i < Worklist.size(); ++i) {
    unsigned BN = Worklist[i];
    MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
    for (auto &R : CSI)
      if (!MBB.isLiveIn(R.getReg()))
        MBB.addLiveIn(R.getReg());
    if (BN != SaveN)
      for (auto &SB : MBB.successors())
        Worklist.insert(SB->getNumber());
  }
}

bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
      MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
      BitVector &Path) const {
  assert(MBB.getNumber() >= 0);
  unsigned BN = MBB.getNumber();
  if (Path[BN] || DoneF[BN])
    return false;
  if (DoneT[BN])
    return true;

  auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();

  Path[BN] = true;
  bool ReachedExit = false;
  for (auto &SB : MBB.successors())
    ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);

  if (!MBB.empty() && MBB.back().isReturn()) {
    // Add implicit uses of all callee-saved registers to the reached
    // return instructions. This is to prevent the anti-dependency breaker
    // from renaming these registers.
    MachineInstr &RetI = MBB.back();
    if (!isRestoreCall(RetI.getOpcode()))
      for (auto &R : CSI)
        RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
    ReachedExit = true;
  }

  // We don't want to add unnecessary live-ins to the restore block: since
  // the callee-saved registers are being defined in it, the entry of the
  // restore block cannot be on the path from the definitions to any exit.
  if (ReachedExit && &MBB != &RestoreB) {
    for (auto &R : CSI)
      if (!MBB.isLiveIn(R.getReg()))
        MBB.addLiveIn(R.getReg());
    DoneT[BN] = true;
  }
  if (!ReachedExit)
    DoneF[BN] = true;

  Path[BN] = false;
  return ReachedExit;
}

static Optional<MachineBasicBlock::iterator>
findCFILocation(MachineBasicBlock &B) {
    // The CFI instructions need to be inserted right after allocframe.
    // An exception to this is a situation where allocframe is bundled
    // with a call: then the CFI instructions need to be inserted before
    // the packet with the allocframe+call (in case the call throws an
    // exception).
    auto End = B.instr_end();

    for (MachineInstr &I : B) {
      MachineBasicBlock::iterator It = I.getIterator();
      if (!I.isBundle()) {
        if (I.getOpcode() == Hexagon::S2_allocframe)
          return std::next(It);
        continue;
      }
      // I is a bundle.
      bool HasCall = false, HasAllocFrame = false;
      auto T = It.getInstrIterator();
      while (++T != End && T->isBundled()) {
        if (T->getOpcode() == Hexagon::S2_allocframe)
          HasAllocFrame = true;
        else if (T->isCall())
          HasCall = true;
      }
      if (HasAllocFrame)
        return HasCall ? It : std::next(It);
    }
    return None;
}

void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
  for (auto &B : MF) {
    auto At = findCFILocation(B);
    if (At.hasValue())
      insertCFIInstructionsAt(B, At.getValue());
  }
}

void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
      MachineBasicBlock::iterator At) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineModuleInfo &MMI = MF.getMMI();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();
  auto &HRI = *HST.getRegisterInfo();

  // If CFI instructions have debug information attached, something goes
  // wrong with the final assembly generation: the prolog_end is placed
  // in a wrong location.
  DebugLoc DL;
  const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);

  MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
  bool HasFP = hasFP(MF);

  if (HasFP) {
    unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
    unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);

    // Define CFA via an offset from the value of FP.
    //
    //  -8   -4    0 (SP)
    // --+----+----+---------------------
    //   | FP | LR |          increasing addresses -->
    // --+----+----+---------------------
    //   |         +-- Old SP (before allocframe)
    //   +-- New FP (after allocframe)
    //
    // MCCFIInstruction::createDefCfa subtracts the offset from the register.
    // MCCFIInstruction::createOffset takes the offset without sign change.
    auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
    BuildMI(MBB, At, DL, CFID)
        .addCFIIndex(MF.addFrameInst(DefCfa));
    // R31 (return addr) = CFA - 4
    auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
    BuildMI(MBB, At, DL, CFID)
        .addCFIIndex(MF.addFrameInst(OffR31));
    // R30 (frame ptr) = CFA - 8
    auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
    BuildMI(MBB, At, DL, CFID)
        .addCFIIndex(MF.addFrameInst(OffR30));
  }

  static unsigned int RegsToMove[] = {
    Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
    Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
    Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
    Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
    Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
    Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
    Hexagon::NoRegister
  };

  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();

  for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
    unsigned Reg = RegsToMove[i];
    auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
      return C.getReg() == Reg;
    };
    auto F = find_if(CSI, IfR);
    if (F == CSI.end())
      continue;

    int64_t Offset;
    if (HasFP) {
      // If the function has a frame pointer (i.e. has an allocframe),
      // then the CFA has been defined in terms of FP. Any offsets in
      // the following CFI instructions have to be defined relative
      // to FP, which points to the bottom of the stack frame.
      // The function getFrameIndexReference can still choose to use SP
      // for the offset calculation, so we cannot simply call it here.
      // Instead, get the offset (relative to the FP) directly.
      Offset = MFI.getObjectOffset(F->getFrameIdx());
    } else {
      unsigned FrameReg;
      Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
    }
    // Subtract 8 to make room for R30 and R31, which are added above.
    Offset -= 8;

    if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
      unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
      auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
                                                   Offset);
      BuildMI(MBB, At, DL, CFID)
          .addCFIIndex(MF.addFrameInst(OffReg));
    } else {
      // Split the double regs into subregs, and generate appropriate
      // cfi_offsets.
      // The only reason, we are split double regs is, llvm-mc does not
      // understand paired registers for cfi_offset.
      // Eg .cfi_offset r1:0, -64

      Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
      Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
      unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
      unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
      auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
                                                  Offset+4);
      BuildMI(MBB, At, DL, CFID)
          .addCFIIndex(MF.addFrameInst(OffHi));
      auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
                                                  Offset);
      BuildMI(MBB, At, DL, CFID)
          .addCFIIndex(MF.addFrameInst(OffLo));
    }
  }
}

bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
    return false;

  auto &MFI = MF.getFrameInfo();
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  bool HasExtraAlign = HRI.needsStackRealignment(MF);
  bool HasAlloca = MFI.hasVarSizedObjects();

  // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
  // that this shouldn't be required, but doing so now because gcc does and
  // gdb can't break at the start of the function without it.  Will remove if
  // this turns out to be a gdb bug.
  //
  if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
    return true;

  // By default we want to use SP (since it's always there). FP requires
  // some setup (i.e. ALLOCFRAME).
  // Both, alloca and stack alignment modify the stack pointer by an
  // undetermined value, so we need to save it at the entry to the function
  // (i.e. use allocframe).
  if (HasAlloca || HasExtraAlign)
    return true;

  if (MFI.getStackSize() > 0) {
    // If FP-elimination is disabled, we have to use FP at this point.
    const TargetMachine &TM = MF.getTarget();
    if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
      return true;
    if (EnableStackOVFSanitizer)
      return true;
  }

  const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
    return true;

  return false;
}

enum SpillKind {
  SK_ToMem,
  SK_FromMem,
  SK_FromMemTailcall
};

static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
      bool Stkchk = false) {
  const char * V4SpillToMemoryFunctions[] = {
    "__save_r16_through_r17",
    "__save_r16_through_r19",
    "__save_r16_through_r21",
    "__save_r16_through_r23",
    "__save_r16_through_r25",
    "__save_r16_through_r27" };

  const char * V4SpillToMemoryStkchkFunctions[] = {
    "__save_r16_through_r17_stkchk",
    "__save_r16_through_r19_stkchk",
    "__save_r16_through_r21_stkchk",
    "__save_r16_through_r23_stkchk",
    "__save_r16_through_r25_stkchk",
    "__save_r16_through_r27_stkchk" };

  const char * V4SpillFromMemoryFunctions[] = {
    "__restore_r16_through_r17_and_deallocframe",
    "__restore_r16_through_r19_and_deallocframe",
    "__restore_r16_through_r21_and_deallocframe",
    "__restore_r16_through_r23_and_deallocframe",
    "__restore_r16_through_r25_and_deallocframe",
    "__restore_r16_through_r27_and_deallocframe" };

  const char * V4SpillFromMemoryTailcallFunctions[] = {
    "__restore_r16_through_r17_and_deallocframe_before_tailcall",
    "__restore_r16_through_r19_and_deallocframe_before_tailcall",
    "__restore_r16_through_r21_and_deallocframe_before_tailcall",
    "__restore_r16_through_r23_and_deallocframe_before_tailcall",
    "__restore_r16_through_r25_and_deallocframe_before_tailcall",
    "__restore_r16_through_r27_and_deallocframe_before_tailcall"
  };

  const char **SpillFunc = nullptr;

  switch(SpillType) {
  case SK_ToMem:
    SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
                       : V4SpillToMemoryFunctions;
    break;
  case SK_FromMem:
    SpillFunc = V4SpillFromMemoryFunctions;
    break;
  case SK_FromMemTailcall:
    SpillFunc = V4SpillFromMemoryTailcallFunctions;
    break;
  }
  assert(SpillFunc && "Unknown spill kind");

  // Spill all callee-saved registers up to the highest register used.
  switch (MaxReg) {
  case Hexagon::R17:
    return SpillFunc[0];
  case Hexagon::R19:
    return SpillFunc[1];
  case Hexagon::R21:
    return SpillFunc[2];
  case Hexagon::R23:
    return SpillFunc[3];
  case Hexagon::R25:
    return SpillFunc[4];
  case Hexagon::R27:
    return SpillFunc[5];
  default:
    llvm_unreachable("Unhandled maximum callee save register");
  }
  return nullptr;
}

int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
      int FI, unsigned &FrameReg) const {
  auto &MFI = MF.getFrameInfo();
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  int Offset = MFI.getObjectOffset(FI);
  bool HasAlloca = MFI.hasVarSizedObjects();
  bool HasExtraAlign = HRI.needsStackRealignment(MF);
  bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;

  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  unsigned FrameSize = MFI.getStackSize();
  unsigned SP = HRI.getStackRegister();
  unsigned FP = HRI.getFrameRegister();
  unsigned AP = HMFI.getStackAlignBasePhysReg();
  // It may happen that AP will be absent even HasAlloca && HasExtraAlign
  // is true. HasExtraAlign may be set because of vector spills, without
  // aligned locals or aligned outgoing function arguments. Since vector
  // spills will ultimately be "unaligned", it is safe to use FP as the
  // base register.
  // In fact, in such a scenario the stack is actually not required to be
  // aligned, although it may end up being aligned anyway, since this
  // particular case is not easily detectable. The alignment will be
  // unnecessary, but not incorrect.
  // Unfortunately there is no quick way to verify that the above is
  // indeed the case (and that it's not a result of an error), so just
  // assume that missing AP will be replaced by FP.
  // (A better fix would be to rematerialize AP from FP and always align
  // vector spills.)
  if (AP == 0)
    AP = FP;

  bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
  // Use FP at -O0, except when there are objects with extra alignment.
  // That additional alignment requirement may cause a pad to be inserted,
  // which will make it impossible to use FP to access objects located
  // past the pad.
  if (NoOpt && !HasExtraAlign)
    UseFP = true;
  if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
    // Fixed and preallocated objects will be located before any padding
    // so FP must be used to access them.
    UseFP |= (HasAlloca || HasExtraAlign);
  } else {
    if (HasAlloca) {
      if (HasExtraAlign)
        UseAP = true;
      else
        UseFP = true;
    }
  }

  // If FP was picked, then there had better be FP.
  bool HasFP = hasFP(MF);
  assert((HasFP || !UseFP) && "This function must have frame pointer");

  // Having FP implies allocframe. Allocframe will store extra 8 bytes:
  // FP/LR. If the base register is used to access an object across these
  // 8 bytes, then the offset will need to be adjusted by 8.
  //
  // After allocframe:
  //                    HexagonISelLowering adds 8 to ---+
  //                    the offsets of all stack-based   |
  //                    arguments (*)                    |
  //                                                     |
  //   getObjectOffset < 0   0     8  getObjectOffset >= 8
  // ------------------------+-----+------------------------> increasing
  //     <local objects>     |FP/LR|    <input arguments>     addresses
  // -----------------+------+-----+------------------------>
  //                  |      |
  //    SP/AP point --+      +-- FP points here (**)
  //    somewhere on
  //    this side of FP/LR
  //
  // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
  // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.

  // The lowering assumes that FP/LR is present, and so the offsets of
  // the formal arguments start at 8. If FP/LR is not there we need to
  // reduce the offset by 8.
  if (Offset > 0 && !HasFP)
    Offset -= 8;

  if (UseFP)
    FrameReg = FP;
  else if (UseAP)
    FrameReg = AP;
  else
    FrameReg = SP;

  // Calculate the actual offset in the instruction. If there is no FP
  // (in other words, no allocframe), then SP will not be adjusted (i.e.
  // there will be no SP -= FrameSize), so the frame size should not be
  // added to the calculated offset.
  int RealOffset = Offset;
  if (!UseFP && !UseAP)
    RealOffset = FrameSize+Offset;
  return RealOffset;
}

bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
      const CSIVect &CSI, const HexagonRegisterInfo &HRI,
      bool &PrologueStubs) const {
  if (CSI.empty())
    return true;

  MachineBasicBlock::iterator MI = MBB.begin();
  PrologueStubs = false;
  MachineFunction &MF = *MBB.getParent();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();

  if (useSpillFunction(MF, CSI)) {
    PrologueStubs = true;
    unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
    bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
    const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
                                               StkOvrFlowEnabled);
    auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
    bool IsPIC = HTM.isPositionIndependent();
    bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;

    // Call spill function.
    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
    unsigned SpillOpc;
    if (StkOvrFlowEnabled) {
      if (LongCalls)
        SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
                         : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
      else
        SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
                         : Hexagon::SAVE_REGISTERS_CALL_V4STK;
    } else {
      if (LongCalls)
        SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
                         : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
      else
        SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
                         : Hexagon::SAVE_REGISTERS_CALL_V4;
    }

    MachineInstr *SaveRegsCall =
        BuildMI(MBB, MI, DL, HII.get(SpillOpc))
          .addExternalSymbol(SpillFun);

    // Add callee-saved registers as use.
    addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
    // Add live in registers.
    for (unsigned I = 0; I < CSI.size(); ++I)
      MBB.addLiveIn(CSI[I].getReg());
    return true;
  }

  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
    unsigned Reg = CSI[i].getReg();
    // Add live in registers. We treat eh_return callee saved register r0 - r3
    // specially. They are not really callee saved registers as they are not
    // supposed to be killed.
    bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
    int FI = CSI[i].getFrameIdx();
    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
    HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
    if (IsKill)
      MBB.addLiveIn(Reg);
  }
  return true;
}

bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
      const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
  if (CSI.empty())
    return false;

  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
  MachineFunction &MF = *MBB.getParent();
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();

  if (useRestoreFunction(MF, CSI)) {
    bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
    unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
    SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
    const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
    auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
    bool IsPIC = HTM.isPositionIndependent();
    bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;

    // Call spill function.
    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
                                  : MBB.findDebugLoc(MBB.end());
    MachineInstr *DeallocCall = nullptr;

    if (HasTC) {
      unsigned RetOpc;
      if (LongCalls)
        RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
                       : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
      else
        RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
                       : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
      DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
          .addExternalSymbol(RestoreFn);
    } else {
      // The block has a return.
      MachineBasicBlock::iterator It = MBB.getFirstTerminator();
      assert(It->isReturn() && std::next(It) == MBB.end());
      unsigned RetOpc;
      if (LongCalls)
        RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
                       : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
      else
        RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
                       : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
      DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
          .addExternalSymbol(RestoreFn);
      // Transfer the function live-out registers.
      DeallocCall->copyImplicitOps(MF, *It);
    }
    addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
    return true;
  }

  for (unsigned i = 0; i < CSI.size(); ++i) {
    unsigned Reg = CSI[i].getReg();
    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
    int FI = CSI[i].getFrameIdx();
    HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
  }

  return true;
}

MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator I) const {
  MachineInstr &MI = *I;
  unsigned Opc = MI.getOpcode();
  (void)Opc; // Silence compiler warning.
  assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
         "Cannot handle this call frame pseudo instruction");
  return MBB.erase(I);
}

void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
    MachineFunction &MF, RegScavenger *RS) const {
  // If this function has uses aligned stack and also has variable sized stack
  // objects, then we need to map all spill slots to fixed positions, so that
  // they can be accessed through FP. Otherwise they would have to be accessed
  // via AP, which may not be available at the particular place in the program.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool HasAlloca = MFI.hasVarSizedObjects();
  bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment());

  if (!HasAlloca || !NeedsAlign)
    return;

  unsigned LFS = MFI.getLocalFrameSize();
  for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
    if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
      continue;
    unsigned S = MFI.getObjectSize(i);
    // Reduce the alignment to at most 8. This will require unaligned vector
    // stores if they happen here.
    unsigned A = std::max(MFI.getObjectAlignment(i), 8U);
    MFI.setObjectAlignment(i, 8);
    LFS = alignTo(LFS+S, A);
    MFI.mapLocalFrameObject(i, -LFS);
  }

  MFI.setLocalFrameSize(LFS);
  Align A = MFI.getLocalFrameMaxAlign();
  assert(A <= 8 && "Unexpected local frame alignment");
  if (A == 1)
    MFI.setLocalFrameMaxAlign(llvm::Align(8));
  MFI.setUseLocalStackAllocationBlock(true);

  // Set the physical aligned-stack base address register.
  unsigned AP = 0;
  if (const MachineInstr *AI = getAlignaInstr(MF))
    AP = AI->getOperand(0).getReg();
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  HMFI.setStackAlignBasePhysReg(AP);
}

/// Returns true if there are no caller-saved registers available in class RC.
static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
      const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
  MachineRegisterInfo &MRI = MF.getRegInfo();

  auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
    for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
      if (MRI.isPhysRegUsed(*AI))
        return true;
    return false;
  };

  // Check for an unused caller-saved register. Callee-saved registers
  // have become pristine by now.
  for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
    if (!IsUsed(*P))
      return false;

  // All caller-saved registers are used.
  return true;
}

#ifndef NDEBUG
static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
  dbgs() << '{';
  for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
    unsigned R = x;
    dbgs() << ' ' << printReg(R, &TRI);
  }
  dbgs() << " }";
}
#endif

bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
      const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
  LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
  MachineFrameInfo &MFI = MF.getFrameInfo();
  BitVector SRegs(Hexagon::NUM_TARGET_REGS);

  // Generate a set of unique, callee-saved registers (SRegs), where each
  // register in the set is maximal in terms of sub-/super-register relation,
  // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.

  // (1) For each callee-saved register, add that register and all of its
  // sub-registers to SRegs.
  LLVM_DEBUG(dbgs() << "Initial CS registers: {");
  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
    unsigned R = CSI[i].getReg();
    LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
      SRegs[*SR] = true;
  }
  LLVM_DEBUG(dbgs() << " }\n");
  LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
             dbgs() << "\n");

  // (2) For each reserved register, remove that register and all of its
  // sub- and super-registers from SRegs.
  BitVector Reserved = TRI->getReservedRegs(MF);
  for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
    unsigned R = x;
    for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
      SRegs[*SR] = false;
  }
  LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
             dbgs() << "\n");
  LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
             dbgs() << "\n");

  // (3) Collect all registers that have at least one sub-register in SRegs,
  // and also have no sub-registers that are reserved. These will be the can-
  // didates for saving as a whole instead of their individual sub-registers.
  // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
  BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
    unsigned R = x;
    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
      TmpSup[*SR] = true;
  }
  for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
    unsigned R = x;
    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
      if (!Reserved[*SR])
        continue;
      TmpSup[R] = false;
      break;
    }
  }
  LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
             dbgs() << "\n");

  // (4) Include all super-registers found in (3) into SRegs.
  SRegs |= TmpSup;
  LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
             dbgs() << "\n");

  // (5) For each register R in SRegs, if any super-register of R is in SRegs,
  // remove R from SRegs.
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
    unsigned R = x;
    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
      if (!SRegs[*SR])
        continue;
      SRegs[R] = false;
      break;
    }
  }
  LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
             dbgs() << "\n");

  // Now, for each register that has a fixed stack slot, create the stack
  // object for it.
  CSI.clear();

  using SpillSlot = TargetFrameLowering::SpillSlot;

  unsigned NumFixed;
  int MinOffset = 0;  // CS offsets are negative.
  const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
  for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
    if (!SRegs[S->Reg])
      continue;
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
    int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
    MinOffset = std::min(MinOffset, S->Offset);
    CSI.push_back(CalleeSavedInfo(S->Reg, FI));
    SRegs[S->Reg] = false;
  }

  // There can be some registers that don't have fixed slots. For example,
  // we need to store R0-R3 in functions with exception handling. For each
  // such register, create a non-fixed stack object.
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
    unsigned R = x;
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
    unsigned Size = TRI->getSpillSize(*RC);
    int Off = MinOffset - Size;
    unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment());
    assert(isPowerOf2_32(Align));
    Off &= -Align;
    int FI = MFI.CreateFixedSpillStackObject(Size, Off);
    MinOffset = std::min(MinOffset, Off);
    CSI.push_back(CalleeSavedInfo(R, FI));
    SRegs[R] = false;
  }

  LLVM_DEBUG({
    dbgs() << "CS information: {";
    for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
      int FI = CSI[i].getFrameIdx();
      int Off = MFI.getObjectOffset(FI);
      dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
      if (Off >= 0)
        dbgs() << '+';
      dbgs() << Off;
    }
    dbgs() << " }\n";
  });

#ifndef NDEBUG
  // Verify that all registers were handled.
  bool MissedReg = false;
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
    unsigned R = x;
    dbgs() << printReg(R, TRI) << ' ';
    MissedReg = true;
  }
  if (MissedReg)
    llvm_unreachable("...there are unhandled callee-saved registers!");
#endif

  return true;
}

bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineInstr *MI = &*It;
  DebugLoc DL = MI->getDebugLoc();
  Register DstR = MI->getOperand(0).getReg();
  Register SrcR = MI->getOperand(1).getReg();
  if (!Hexagon::ModRegsRegClass.contains(DstR) ||
      !Hexagon::ModRegsRegClass.contains(SrcR))
    return false;

  Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
  BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
  BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
    .addReg(TmpR, RegState::Kill);

  NewRegs.push_back(TmpR);
  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineInstr *MI = &*It;
  if (!MI->getOperand(0).isFI())
    return false;

  DebugLoc DL = MI->getDebugLoc();
  unsigned Opc = MI->getOpcode();
  Register SrcR = MI->getOperand(2).getReg();
  bool IsKill = MI->getOperand(2).isKill();
  int FI = MI->getOperand(0).getIndex();

  // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
  // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
  Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
  unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
                                                 : Hexagon::A2_tfrcrr;
  BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
    .addReg(SrcR, getKillRegState(IsKill));

  // S2_storeri_io FI, 0, TmpR
  BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
      .addFrameIndex(FI)
      .addImm(0)
      .addReg(TmpR, RegState::Kill)
      .cloneMemRefs(*MI);

  NewRegs.push_back(TmpR);
  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineInstr *MI = &*It;
  if (!MI->getOperand(1).isFI())
    return false;

  DebugLoc DL = MI->getDebugLoc();
  unsigned Opc = MI->getOpcode();
  Register DstR = MI->getOperand(0).getReg();
  int FI = MI->getOperand(1).getIndex();

  // TmpR = L2_loadri_io FI, 0
  Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
  BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
      .addFrameIndex(FI)
      .addImm(0)
      .cloneMemRefs(*MI);

  // DstR = C2_tfrrp TmpR   if DstR is a predicate register
  // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
  unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
                                                 : Hexagon::A2_tfrrcr;
  BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
    .addReg(TmpR, RegState::Kill);

  NewRegs.push_back(TmpR);
  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineInstr *MI = &*It;
  if (!MI->getOperand(0).isFI())
    return false;

  DebugLoc DL = MI->getDebugLoc();
  Register SrcR = MI->getOperand(2).getReg();
  bool IsKill = MI->getOperand(2).isKill();
  int FI = MI->getOperand(0).getIndex();
  auto *RC = &Hexagon::HvxVRRegClass;

  // Insert transfer to general vector register.
  //   TmpR0 = A2_tfrsi 0x01010101
  //   TmpR1 = V6_vandqrt Qx, TmpR0
  //   store FI, 0, TmpR1
  Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
  Register TmpR1 = MRI.createVirtualRegister(RC);

  BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
    .addImm(0x01010101);

  BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
    .addReg(SrcR, getKillRegState(IsKill))
    .addReg(TmpR0, RegState::Kill);

  auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
  HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
  expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);

  NewRegs.push_back(TmpR0);
  NewRegs.push_back(TmpR1);
  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineInstr *MI = &*It;
  if (!MI->getOperand(1).isFI())
    return false;

  DebugLoc DL = MI->getDebugLoc();
  Register DstR = MI->getOperand(0).getReg();
  int FI = MI->getOperand(1).getIndex();
  auto *RC = &Hexagon::HvxVRRegClass;

  // TmpR0 = A2_tfrsi 0x01010101
  // TmpR1 = load FI, 0
  // DstR = V6_vandvrt TmpR1, TmpR0
  Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
  Register TmpR1 = MRI.createVirtualRegister(RC);

  BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
    .addImm(0x01010101);
  MachineFunction &MF = *B.getParent();
  auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
  expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);

  BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
    .addReg(TmpR1, RegState::Kill)
    .addReg(TmpR0, RegState::Kill);

  NewRegs.push_back(TmpR0);
  NewRegs.push_back(TmpR1);
  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineFunction &MF = *B.getParent();
  auto &MFI = MF.getFrameInfo();
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  MachineInstr *MI = &*It;
  if (!MI->getOperand(0).isFI())
    return false;

  // It is possible that the double vector being stored is only partially
  // defined. From the point of view of the liveness tracking, it is ok to
  // store it as a whole, but if we break it up we may end up storing a
  // register that is entirely undefined.
  LivePhysRegs LPR(HRI);
  LPR.addLiveIns(B);
  SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
  for (auto R = B.begin(); R != It; ++R) {
    Clobbers.clear();
    LPR.stepForward(*R, Clobbers);
  }

  DebugLoc DL = MI->getDebugLoc();
  Register SrcR = MI->getOperand(2).getReg();
  Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
  Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
  bool IsKill = MI->getOperand(2).isKill();
  int FI = MI->getOperand(0).getIndex();

  unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
  unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
  unsigned HasAlign = MFI.getObjectAlignment(FI);
  unsigned StoreOpc;

  // Store low part.
  if (LPR.contains(SrcLo)) {
    StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
                                     : Hexagon::V6_vS32Ub_ai;
    BuildMI(B, It, DL, HII.get(StoreOpc))
        .addFrameIndex(FI)
        .addImm(0)
        .addReg(SrcLo, getKillRegState(IsKill))
        .cloneMemRefs(*MI);
  }

  // Store high part.
  if (LPR.contains(SrcHi)) {
    StoreOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vS32b_ai
                                                     : Hexagon::V6_vS32Ub_ai;
    BuildMI(B, It, DL, HII.get(StoreOpc))
        .addFrameIndex(FI)
        .addImm(Size)
        .addReg(SrcHi, getKillRegState(IsKill))
        .cloneMemRefs(*MI);
  }

  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineFunction &MF = *B.getParent();
  auto &MFI = MF.getFrameInfo();
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  MachineInstr *MI = &*It;
  if (!MI->getOperand(1).isFI())
    return false;

  DebugLoc DL = MI->getDebugLoc();
  Register DstR = MI->getOperand(0).getReg();
  Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
  Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
  int FI = MI->getOperand(1).getIndex();

  unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
  unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
  unsigned HasAlign = MFI.getObjectAlignment(FI);
  unsigned LoadOpc;

  // Load low part.
  LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
                                  : Hexagon::V6_vL32Ub_ai;
  BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
      .addFrameIndex(FI)
      .addImm(0)
      .cloneMemRefs(*MI);

  // Load high part.
  LoadOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vL32b_ai
                                                  : Hexagon::V6_vL32Ub_ai;
  BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
      .addFrameIndex(FI)
      .addImm(Size)
      .cloneMemRefs(*MI);

  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineFunction &MF = *B.getParent();
  auto &MFI = MF.getFrameInfo();
  MachineInstr *MI = &*It;
  if (!MI->getOperand(0).isFI())
    return false;

  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  DebugLoc DL = MI->getDebugLoc();
  Register SrcR = MI->getOperand(2).getReg();
  bool IsKill = MI->getOperand(2).isKill();
  int FI = MI->getOperand(0).getIndex();

  unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
  unsigned HasAlign = MFI.getObjectAlignment(FI);
  unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
                                            : Hexagon::V6_vS32Ub_ai;
  BuildMI(B, It, DL, HII.get(StoreOpc))
      .addFrameIndex(FI)
      .addImm(0)
      .addReg(SrcR, getKillRegState(IsKill))
      .cloneMemRefs(*MI);

  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
      MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
      const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
  MachineFunction &MF = *B.getParent();
  auto &MFI = MF.getFrameInfo();
  MachineInstr *MI = &*It;
  if (!MI->getOperand(1).isFI())
    return false;

  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  DebugLoc DL = MI->getDebugLoc();
  Register DstR = MI->getOperand(0).getReg();
  int FI = MI->getOperand(1).getIndex();

  unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
  unsigned HasAlign = MFI.getObjectAlignment(FI);
  unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
                                           : Hexagon::V6_vL32Ub_ai;
  BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
      .addFrameIndex(FI)
      .addImm(0)
      .cloneMemRefs(*MI);

  B.erase(It);
  return true;
}

bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
      SmallVectorImpl<unsigned> &NewRegs) const {
  auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  bool Changed = false;

  for (auto &B : MF) {
    // Traverse the basic block.
    MachineBasicBlock::iterator NextI;
    for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
      MachineInstr *MI = &*I;
      NextI = std::next(I);
      unsigned Opc = MI->getOpcode();

      switch (Opc) {
        case TargetOpcode::COPY:
          Changed |= expandCopy(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::STriw_pred:
        case Hexagon::STriw_ctr:
          Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::LDriw_pred:
        case Hexagon::LDriw_ctr:
          Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::PS_vstorerq_ai:
          Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::PS_vloadrq_ai:
          Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::PS_vloadrw_ai:
        case Hexagon::PS_vloadrwu_ai:
          Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
          break;
        case Hexagon::PS_vstorerw_ai:
        case Hexagon::PS_vstorerwu_ai:
          Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
          break;
      }
    }
  }

  return Changed;
}

void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
                                                BitVector &SavedRegs,
                                                RegScavenger *RS) const {
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();

  SavedRegs.resize(HRI.getNumRegs());

  // If we have a function containing __builtin_eh_return we want to spill and
  // restore all callee saved registers. Pretend that they are used.
  if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
    for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
      SavedRegs.set(*R);

  // Replace predicate register pseudo spill code.
  SmallVector<unsigned,8> NewRegs;
  expandSpillMacros(MF, NewRegs);
  if (OptimizeSpillSlots && !isOptNone(MF))
    optimizeSpillSlots(MF, NewRegs);

  // We need to reserve a spill slot if scavenging could potentially require
  // spilling a scavenged register.
  if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    MachineRegisterInfo &MRI = MF.getRegInfo();
    SetVector<const TargetRegisterClass*> SpillRCs;
    // Reserve an int register in any case, because it could be used to hold
    // the stack offset in case it does not fit into a spill instruction.
    SpillRCs.insert(&Hexagon::IntRegsRegClass);

    for (unsigned VR : NewRegs)
      SpillRCs.insert(MRI.getRegClass(VR));

    for (auto *RC : SpillRCs) {
      if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
        continue;
      unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
      unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC);
      for (unsigned i = 0; i < Num; i++) {
        int NewFI = MFI.CreateSpillStackObject(S, A);
        RS->addScavengingFrameIndex(NewFI);
      }
    }
  }

  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
}

unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
      HexagonBlockRanges::IndexRange &FIR,
      HexagonBlockRanges::InstrIndexMap &IndexMap,
      HexagonBlockRanges::RegToRangeMap &DeadMap,
      const TargetRegisterClass *RC) const {
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  auto &MRI = MF.getRegInfo();

  auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
    auto F = DeadMap.find({Reg,0});
    if (F == DeadMap.end())
      return false;
    for (auto &DR : F->second)
      if (DR.contains(FIR))
        return true;
    return false;
  };

  for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
    bool Dead = true;
    for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
      if (isDead(R.Reg))
        continue;
      Dead = false;
      break;
    }
    if (Dead)
      return Reg;
  }
  return 0;
}

void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
      SmallVectorImpl<unsigned> &VRegs) const {
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  auto &HII = *HST.getInstrInfo();
  auto &HRI = *HST.getRegisterInfo();
  auto &MRI = MF.getRegInfo();
  HexagonBlockRanges HBR(MF);

  using BlockIndexMap =
      std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
  using BlockRangeMap =
      std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
  using IndexType = HexagonBlockRanges::IndexType;

  struct SlotInfo {
    BlockRangeMap Map;
    unsigned Size = 0;
    const TargetRegisterClass *RC = nullptr;

    SlotInfo() = default;
  };

  BlockIndexMap BlockIndexes;
  SmallSet<int,4> BadFIs;
  std::map<int,SlotInfo> FIRangeMap;

  // Accumulate register classes: get a common class for a pre-existing
  // class HaveRC and a new class NewRC. Return nullptr if a common class
  // cannot be found, otherwise return the resulting class. If HaveRC is
  // nullptr, assume that it is still unset.
  auto getCommonRC =
      [](const TargetRegisterClass *HaveRC,
         const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
    if (HaveRC == nullptr || HaveRC == NewRC)
      return NewRC;
    // Different classes, both non-null. Pick the more general one.
    if (HaveRC->hasSubClassEq(NewRC))
      return HaveRC;
    if (NewRC->hasSubClassEq(HaveRC))
      return NewRC;
    return nullptr;
  };

  // Scan all blocks in the function. Check all occurrences of frame indexes,
  // and collect relevant information.
  for (auto &B : MF) {
    std::map<int,IndexType> LastStore, LastLoad;
    // Emplace appears not to be supported in gcc 4.7.2-4.
    //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
    auto P = BlockIndexes.insert(
                std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
    auto &IndexMap = P.first->second;
    LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
                      << IndexMap << '\n');

    for (auto &In : B) {
      int LFI, SFI;
      bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
      bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
      if (Load && Store) {
        // If it's both a load and a store, then we won't handle it.
        BadFIs.insert(LFI);
        BadFIs.insert(SFI);
        continue;
      }
      // Check for register classes of the register used as the source for
      // the store, and the register used as the destination for the load.
      // Also, only accept base+imm_offset addressing modes. Other addressing
      // modes can have side-effects (post-increments, etc.). For stack
      // slots they are very unlikely, so there is not much loss due to
      // this restriction.
      if (Load || Store) {
        int TFI = Load ? LFI : SFI;
        unsigned AM = HII.getAddrMode(In);
        SlotInfo &SI = FIRangeMap[TFI];
        bool Bad = (AM != HexagonII::BaseImmOffset);
        if (!Bad) {
          // If the addressing mode is ok, check the register class.
          unsigned OpNum = Load ? 0 : 2;
          auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
          RC = getCommonRC(SI.RC, RC);
          if (RC == nullptr)
            Bad = true;
          else
            SI.RC = RC;
        }
        if (!Bad) {
          // Check sizes.
          unsigned S = HII.getMemAccessSize(In);
          if (SI.Size != 0 && SI.Size != S)
            Bad = true;
          else
            SI.Size = S;
        }
        if (!Bad) {
          for (auto *Mo : In.memoperands()) {
            if (!Mo->isVolatile() && !Mo->isAtomic())
              continue;
            Bad = true;
            break;
          }
        }
        if (Bad)
          BadFIs.insert(TFI);
      }

      // Locate uses of frame indices.
      for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
        const MachineOperand &Op = In.getOperand(i);
        if (!Op.isFI())
          continue;
        int FI = Op.getIndex();
        // Make sure that the following operand is an immediate and that
        // it is 0. This is the offset in the stack object.
        if (i+1 >= n || !In.getOperand(i+1).isImm() ||
            In.getOperand(i+1).getImm() != 0)
          BadFIs.insert(FI);
        if (BadFIs.count(FI))
          continue;

        IndexType Index = IndexMap.getIndex(&In);
        if (Load) {
          if (LastStore[FI] == IndexType::None)
            LastStore[FI] = IndexType::Entry;
          LastLoad[FI] = Index;
        } else if (Store) {
          HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
          if (LastStore[FI] != IndexType::None)
            RL.add(LastStore[FI], LastLoad[FI], false, false);
          else if (LastLoad[FI] != IndexType::None)
            RL.add(IndexType::Entry, LastLoad[FI], false, false);
          LastLoad[FI] = IndexType::None;
          LastStore[FI] = Index;
        } else {
          BadFIs.insert(FI);
        }
      }
    }

    for (auto &I : LastLoad) {
      IndexType LL = I.second;
      if (LL == IndexType::None)
        continue;
      auto &RL = FIRangeMap[I.first].Map[&B];
      IndexType &LS = LastStore[I.first];
      if (LS != IndexType::None)
        RL.add(LS, LL, false, false);
      else
        RL.add(IndexType::Entry, LL, false, false);
      LS = IndexType::None;
    }
    for (auto &I : LastStore) {
      IndexType LS = I.second;
      if (LS == IndexType::None)
        continue;
      auto &RL = FIRangeMap[I.first].Map[&B];
      RL.add(LS, IndexType::None, false, false);
    }
  }

  LLVM_DEBUG({
    for (auto &P : FIRangeMap) {
      dbgs() << "fi#" << P.first;
      if (BadFIs.count(P.first))
        dbgs() << " (bad)";
      dbgs() << "  RC: ";
      if (P.second.RC != nullptr)
        dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
      else
        dbgs() << "<null>\n";
      for (auto &R : P.second.Map)
        dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
               << "}\n";
    }
  });

  // When a slot is loaded from in a block without being stored to in the
  // same block, it is live-on-entry to this block. To avoid CFG analysis,
  // consider this slot to be live-on-exit from all blocks.
  SmallSet<int,4> LoxFIs;

  std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;

  for (auto &P : FIRangeMap) {
    // P = pair(FI, map: BB->RangeList)
    if (BadFIs.count(P.first))
      continue;
    for (auto &B : MF) {
      auto F = P.second.Map.find(&B);
      // F = pair(BB, RangeList)
      if (F == P.second.Map.end() || F->second.empty())
        continue;
      HexagonBlockRanges::IndexRange &IR = F->second.front();
      if (IR.start() == IndexType::Entry)
        LoxFIs.insert(P.first);
      BlockFIMap[&B].push_back(P.first);
    }
  }

  LLVM_DEBUG({
    dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
    for (auto &P : BlockFIMap) {
      auto &FIs = P.second;
      if (FIs.empty())
        continue;
      dbgs() << "  " << printMBBReference(*P.first) << ": {";
      for (auto I : FIs) {
        dbgs() << " fi#" << I;
        if (LoxFIs.count(I))
          dbgs() << '*';
      }
      dbgs() << " }\n";
    }
  });

#ifndef NDEBUG
  bool HasOptLimit = SpillOptMax.getPosition();
#endif

  // eliminate loads, when all loads eliminated, eliminate all stores.
  for (auto &B : MF) {
    auto F = BlockIndexes.find(&B);
    assert(F != BlockIndexes.end());
    HexagonBlockRanges::InstrIndexMap &IM = F->second;
    HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
    HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
    LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
                      << HexagonBlockRanges::PrintRangeMap(DM, HRI));

    for (auto FI : BlockFIMap[&B]) {
      if (BadFIs.count(FI))
        continue;
      LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
      HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
      for (auto &Range : RL) {
        LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
        if (!IndexType::isInstr(Range.start()) ||
            !IndexType::isInstr(Range.end()))
          continue;
        MachineInstr &SI = *IM.getInstr(Range.start());
        MachineInstr &EI = *IM.getInstr(Range.end());
        assert(SI.mayStore() && "Unexpected start instruction");
        assert(EI.mayLoad() && "Unexpected end instruction");
        MachineOperand &SrcOp = SI.getOperand(2);

        HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
                                                  SrcOp.getSubReg() };
        auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
        // The this-> is needed to unconfuse MSVC.
        unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
        LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
                          << '\n');
        if (FoundR == 0)
          continue;
#ifndef NDEBUG
        if (HasOptLimit) {
          if (SpillOptCount >= SpillOptMax)
            return;
          SpillOptCount++;
        }
#endif

        // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
        MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
        MachineInstr *CopyIn = nullptr;
        if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
          const DebugLoc &DL = SI.getDebugLoc();
          CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
                       .add(SrcOp);
        }

        ++StartIt;
        // Check if this is a last store and the FI is live-on-exit.
        if (LoxFIs.count(FI) && (&Range == &RL.back())) {
          // Update store's source register.
          if (unsigned SR = SrcOp.getSubReg())
            SrcOp.setReg(HRI.getSubReg(FoundR, SR));
          else
            SrcOp.setReg(FoundR);
          SrcOp.setSubReg(0);
          // We are keeping this register live.
          SrcOp.setIsKill(false);
        } else {
          B.erase(&SI);
          IM.replaceInstr(&SI, CopyIn);
        }

        auto EndIt = std::next(EI.getIterator());
        for (auto It = StartIt; It != EndIt; It = NextIt) {
          MachineInstr &MI = *It;
          NextIt = std::next(It);
          int TFI;
          if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
            continue;
          Register DstR = MI.getOperand(0).getReg();
          assert(MI.getOperand(0).getSubReg() == 0);
          MachineInstr *CopyOut = nullptr;
          if (DstR != FoundR) {
            DebugLoc DL = MI.getDebugLoc();
            unsigned MemSize = HII.getMemAccessSize(MI);
            assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
            unsigned CopyOpc = TargetOpcode::COPY;
            if (HII.isSignExtendingLoad(MI))
              CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
            else if (HII.isZeroExtendingLoad(MI))
              CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
            CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
                        .addReg(FoundR, getKillRegState(&MI == &EI));
          }
          IM.replaceInstr(&MI, CopyOut);
          B.erase(It);
        }

        // Update the dead map.
        HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
        for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
          DM[RR].subtract(Range);
      } // for Range in range list
    }
  }
}

void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
      const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
  MachineBasicBlock &MB = *AI->getParent();
  DebugLoc DL = AI->getDebugLoc();
  unsigned A = AI->getOperand(2).getImm();

  // Have
  //    Rd  = alloca Rs, #A
  //
  // If Rs and Rd are different registers, use this sequence:
  //    Rd  = sub(r29, Rs)
  //    r29 = sub(r29, Rs)
  //    Rd  = and(Rd, #-A)    ; if necessary
  //    r29 = and(r29, #-A)   ; if necessary
  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
  // otherwise, do
  //    Rd  = sub(r29, Rs)
  //    Rd  = and(Rd, #-A)    ; if necessary
  //    r29 = Rd
  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A

  MachineOperand &RdOp = AI->getOperand(0);
  MachineOperand &RsOp = AI->getOperand(1);
  unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();

  // Rd = sub(r29, Rs)
  BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
      .addReg(SP)
      .addReg(Rs);
  if (Rs != Rd) {
    // r29 = sub(r29, Rs)
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
        .addReg(SP)
        .addReg(Rs);
  }
  if (A > 8) {
    // Rd  = and(Rd, #-A)
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
        .addReg(Rd)
        .addImm(-int64_t(A));
    if (Rs != Rd)
      BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
          .addReg(SP)
          .addImm(-int64_t(A));
  }
  if (Rs == Rd) {
    // r29 = Rd
    BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
        .addReg(Rd);
  }
  if (CF > 0) {
    // Rd = add(Rd, #CF)
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
        .addReg(Rd)
        .addImm(CF);
  }
}

bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (!MFI.hasVarSizedObjects())
    return false;
  unsigned MaxA = MFI.getMaxAlignment();
  if (MaxA <= getStackAlignment())
    return false;
  return true;
}

const MachineInstr *HexagonFrameLowering::getAlignaInstr(
      const MachineFunction &MF) const {
  for (auto &B : MF)
    for (auto &I : B)
      if (I.getOpcode() == Hexagon::PS_aligna)
        return &I;
  return nullptr;
}

/// Adds all callee-saved registers as implicit uses or defs to the
/// instruction.
void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
      const CSIVect &CSI, bool IsDef, bool IsKill) const {
  // Add the callee-saved registers as implicit uses.
  for (auto &R : CSI)
    MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
}

/// Determine whether the callee-saved register saves and restores should
/// be generated via inline code. If this function returns "true", inline
/// code will be generated. If this function returns "false", additional
/// checks are performed, which may still lead to the inline code.
bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
      const CSIVect &CSI) const {
  if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
    return true;
  if (!hasFP(MF))
    return true;
  if (!isOptSize(MF) && !isMinSize(MF))
    if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
      return true;

  // Check if CSI only has double registers, and if the registers form
  // a contiguous block starting from D8.
  BitVector Regs(Hexagon::NUM_TARGET_REGS);
  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
    unsigned R = CSI[i].getReg();
    if (!Hexagon::DoubleRegsRegClass.contains(R))
      return true;
    Regs[R] = true;
  }
  int F = Regs.find_first();
  if (F != Hexagon::D8)
    return true;
  while (F >= 0) {
    int N = Regs.find_next(F);
    if (N >= 0 && N != F+1)
      return true;
    F = N;
  }

  return false;
}

bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
      const CSIVect &CSI) const {
  if (shouldInlineCSR(MF, CSI))
    return false;
  unsigned NumCSI = CSI.size();
  if (NumCSI <= 1)
    return false;

  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
                                     : SpillFuncThreshold;
  return Threshold < NumCSI;
}

bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
      const CSIVect &CSI) const {
  if (shouldInlineCSR(MF, CSI))
    return false;
  // The restore functions do a bit more than just restoring registers.
  // The non-returning versions will go back directly to the caller's
  // caller, others will clean up the stack frame in preparation for
  // a tail call. Using them can still save code size even if only one
  // register is getting restores. Make the decision based on -Oz:
  // using -Os will use inline restore for a single register.
  if (isMinSize(MF))
    return true;
  unsigned NumCSI = CSI.size();
  if (NumCSI <= 1)
    return false;

  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
                                     : SpillFuncThreshold;
  return Threshold < NumCSI;
}

bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
  unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  // A fairly simplistic guess as to whether a potential load/store to a
  // stack location could require an extra register.
  if (HST.useHVXOps() && StackSize > 256)
    return true;

  // Check if the function has store-immediate instructions that access
  // the stack. Since the offset field is not extendable, if the stack
  // size exceeds the offset limit (6 bits, shifted), the stores will
  // require a new base register.
  bool HasImmStack = false;
  unsigned MinLS = ~0u;   // Log_2 of the memory access size.

  for (const MachineBasicBlock &B : MF) {
    for (const MachineInstr &MI : B) {
      unsigned LS = 0;
      switch (MI.getOpcode()) {
        case Hexagon::S4_storeirit_io:
        case Hexagon::S4_storeirif_io:
        case Hexagon::S4_storeiri_io:
          ++LS;
          LLVM_FALLTHROUGH;
        case Hexagon::S4_storeirht_io:
        case Hexagon::S4_storeirhf_io:
        case Hexagon::S4_storeirh_io:
          ++LS;
          LLVM_FALLTHROUGH;
        case Hexagon::S4_storeirbt_io:
        case Hexagon::S4_storeirbf_io:
        case Hexagon::S4_storeirb_io:
          if (MI.getOperand(0).isFI())
            HasImmStack = true;
          MinLS = std::min(MinLS, LS);
          break;
      }
    }
  }

  if (HasImmStack)
    return !isUInt<6>(StackSize >> MinLS);

  return false;
}
OpenPOWER on IntegriCloud