summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp
blob: e4f29fbb3dba2407c30821eec4b333aeda34c4fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass abstracted struct/union member accesses in order to support
// compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
// which can run on different kernels. In particular, if bpf program tries to
// access a particular kernel data structure member, the details of the
// intermediate member access will be remembered so bpf loader can do
// necessary adjustment right before program loading.
//
// For example,
//
//   struct s {
//     int a;
//     int b;
//   };
//   struct t {
//     struct s c;
//     int d;
//   };
//   struct t e;
//
// For the member access e.c.b, the compiler will generate code
//   &e + 4
//
// The compile-once run-everywhere instead generates the following code
//   r = 4
//   &e + r
// The "4" in "r = 4" can be changed based on a particular kernel version.
// For example, on a particular kernel version, if struct s is changed to
//
//   struct s {
//     int new_field;
//     int a;
//     int b;
//   }
//
// By repeating the member access on the host, the bpf loader can
// adjust "r = 4" as "r = 8".
//
// This feature relies on the following three intrinsic calls:
//   addr = preserve_array_access_index(base, dimension, index)
//   addr = preserve_union_access_index(base, di_index)
//          !llvm.preserve.access.index <union_ditype>
//   addr = preserve_struct_access_index(base, gep_index, di_index)
//          !llvm.preserve.access.index <struct_ditype>
//
//===----------------------------------------------------------------------===//

#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <stack>

#define DEBUG_TYPE "bpf-abstract-member-access"

namespace llvm {
const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
const std::string BPFCoreSharedInfo::PatchableExtSecName =
    ".BPF.patchable_externs";
} // namespace llvm

using namespace llvm;

namespace {

class BPFAbstractMemberAccess final : public ModulePass {
  StringRef getPassName() const override {
    return "BPF Abstract Member Access";
  }

  bool runOnModule(Module &M) override;

public:
  static char ID;
  BPFAbstractMemberAccess() : ModulePass(ID) {}

private:
  enum : uint32_t {
    BPFPreserveArrayAI = 1,
    BPFPreserveUnionAI = 2,
    BPFPreserveStructAI = 3,
  };

  std::map<std::string, GlobalVariable *> GEPGlobals;
  // A map to link preserve_*_access_index instrinsic calls.
  std::map<CallInst *, std::pair<CallInst *, uint32_t>> AIChain;
  // A map to hold all the base preserve_*_access_index instrinsic calls.
  // The base call is not an input of any other preserve_*_access_index
  // intrinsics.
  std::map<CallInst *, uint32_t> BaseAICalls;

  bool doTransformation(Module &M);

  void traceAICall(CallInst *Call, uint32_t Kind, const MDNode *ParentMeta,
                   uint32_t ParentAI);
  void traceBitCast(BitCastInst *BitCast, CallInst *Parent, uint32_t Kind,
                    const MDNode *ParentMeta, uint32_t ParentAI);
  void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, uint32_t Kind,
                const MDNode *ParentMeta, uint32_t ParentAI);
  void collectAICallChains(Module &M, Function &F);

  bool IsPreserveDIAccessIndexCall(const CallInst *Call, uint32_t &Kind,
                                   const MDNode *&TypeMeta, uint32_t &AccessIndex);
  bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
                      const MDNode *ChildMeta);
  bool removePreserveAccessIndexIntrinsic(Module &M);
  void replaceWithGEP(std::vector<CallInst *> &CallList,
                      uint32_t NumOfZerosIndex, uint32_t DIIndex);

  Value *computeBaseAndAccessKey(CallInst *Call, std::string &AccessKey,
                                 uint32_t Kind, MDNode *&BaseMeta);
  bool getAccessIndex(const Value *IndexValue, uint64_t &AccessIndex);
  bool transformGEPChain(Module &M, CallInst *Call, uint32_t Kind);
};
} // End anonymous namespace

char BPFAbstractMemberAccess::ID = 0;
INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
                "abstracting struct/union member accessees", false, false)

ModulePass *llvm::createBPFAbstractMemberAccess() {
  return new BPFAbstractMemberAccess();
}

bool BPFAbstractMemberAccess::runOnModule(Module &M) {
  LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");

  // Bail out if no debug info.
  if (empty(M.debug_compile_units()))
    return false;

  return doTransformation(M);
}

static bool SkipDIDerivedTag(unsigned Tag) {
  if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
      Tag != dwarf::DW_TAG_volatile_type &&
      Tag != dwarf::DW_TAG_restrict_type &&
      Tag != dwarf::DW_TAG_member)
     return false;
  return true;
}

static DIType * stripQualifiers(DIType *Ty) {
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    if (!SkipDIDerivedTag(DTy->getTag()))
      break;
    Ty = DTy->getBaseType();
  }
  return Ty;
}

static const DIType * stripQualifiers(const DIType *Ty) {
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    if (!SkipDIDerivedTag(DTy->getTag()))
      break;
    Ty = DTy->getBaseType();
  }
  return Ty;
}

static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
  DINodeArray Elements = CTy->getElements();
  uint32_t DimSize = 1;
  for (uint32_t I = StartDim; I < Elements.size(); ++I) {
    if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
      if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
        const DISubrange *SR = cast<DISubrange>(Element);
        auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
        DimSize *= CI->getSExtValue();
      }
  }

  return DimSize;
}

/// Check whether a call is a preserve_*_access_index intrinsic call or not.
bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
                                                          uint32_t &Kind,
                                                          const MDNode *&TypeMeta,
                                                          uint32_t &AccessIndex) {
  if (!Call)
    return false;

  const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
  if (!GV)
    return false;
  if (GV->getName().startswith("llvm.preserve.array.access.index")) {
    Kind = BPFPreserveArrayAI;
    TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!TypeMeta)
      report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
    AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
                      ->getZExtValue();
    return true;
  }
  if (GV->getName().startswith("llvm.preserve.union.access.index")) {
    Kind = BPFPreserveUnionAI;
    TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!TypeMeta)
      report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
    AccessIndex = cast<ConstantInt>(Call->getArgOperand(1))
                      ->getZExtValue();
    return true;
  }
  if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
    Kind = BPFPreserveStructAI;
    TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!TypeMeta)
      report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
    AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
                      ->getZExtValue();
    return true;
  }

  return false;
}

void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
                                             uint32_t DimensionIndex,
                                             uint32_t GEPIndex) {
  for (auto Call : CallList) {
    uint32_t Dimension = 1;
    if (DimensionIndex > 0)
      Dimension = cast<ConstantInt>(Call->getArgOperand(DimensionIndex))
                      ->getZExtValue();

    Constant *Zero =
        ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
    SmallVector<Value *, 4> IdxList;
    for (unsigned I = 0; I < Dimension; ++I)
      IdxList.push_back(Zero);
    IdxList.push_back(Call->getArgOperand(GEPIndex));

    auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
                                                  IdxList, "", Call);
    Call->replaceAllUsesWith(GEP);
    Call->eraseFromParent();
  }
}

bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
  std::vector<CallInst *> PreserveArrayIndexCalls;
  std::vector<CallInst *> PreserveUnionIndexCalls;
  std::vector<CallInst *> PreserveStructIndexCalls;
  bool Found = false;

  for (Function &F : M)
    for (auto &BB : F)
      for (auto &I : BB) {
        auto *Call = dyn_cast<CallInst>(&I);
        uint32_t Kind;
        const MDNode *TypeMeta;
        uint32_t AccessIndex;
        if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex))
          continue;

        Found = true;
        if (Kind == BPFPreserveArrayAI)
          PreserveArrayIndexCalls.push_back(Call);
        else if (Kind == BPFPreserveUnionAI)
          PreserveUnionIndexCalls.push_back(Call);
        else
          PreserveStructIndexCalls.push_back(Call);
      }

  // do the following transformation:
  // . addr = preserve_array_access_index(base, dimension, index)
  //   is transformed to
  //     addr = GEP(base, dimenion's zero's, index)
  // . addr = preserve_union_access_index(base, di_index)
  //   is transformed to
  //     addr = base, i.e., all usages of "addr" are replaced by "base".
  // . addr = preserve_struct_access_index(base, gep_index, di_index)
  //   is transformed to
  //     addr = GEP(base, 0, gep_index)
  replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
  replaceWithGEP(PreserveStructIndexCalls, 0, 1);
  for (auto Call : PreserveUnionIndexCalls) {
    Call->replaceAllUsesWith(Call->getArgOperand(0));
    Call->eraseFromParent();
  }

  return Found;
}

/// Check whether the access index chain is valid. We check
/// here because there may be type casts between two
/// access indexes. We want to ensure memory access still valid.
bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
                                             uint32_t ParentAI,
                                             const MDNode *ChildType) {
  const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
  const DIType *CType = stripQualifiers(cast<DIType>(ChildType));

  // Child is a derived/pointer type, which is due to type casting.
  // Pointer type cannot be in the middle of chain.
  if (isa<DIDerivedType>(CType))
    return false;

  // Parent is a pointer type.
  if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
    if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
      return false;
    return stripQualifiers(PtrTy->getBaseType()) == CType;
  }

  // Otherwise, struct/union/array types
  const auto *PTy = dyn_cast<DICompositeType>(PType);
  const auto *CTy = dyn_cast<DICompositeType>(CType);
  assert(PTy && CTy && "ParentType or ChildType is null or not composite");

  uint32_t PTyTag = PTy->getTag();
  assert(PTyTag == dwarf::DW_TAG_array_type ||
         PTyTag == dwarf::DW_TAG_structure_type ||
         PTyTag == dwarf::DW_TAG_union_type);

  uint32_t CTyTag = CTy->getTag();
  assert(CTyTag == dwarf::DW_TAG_array_type ||
         CTyTag == dwarf::DW_TAG_structure_type ||
         CTyTag == dwarf::DW_TAG_union_type);

  // Multi dimensional arrays, base element should be the same
  if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
    return PTy->getBaseType() == CTy->getBaseType();

  DIType *Ty;
  if (PTyTag == dwarf::DW_TAG_array_type)
    Ty = PTy->getBaseType();
  else
    Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);

  return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
}

void BPFAbstractMemberAccess::traceAICall(CallInst *Call, uint32_t Kind,
                                          const MDNode *ParentMeta,
                                          uint32_t ParentAI) {
  for (User *U : Call->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Call, Kind, ParentMeta, ParentAI);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      uint32_t CIKind;
      const MDNode *ChildMeta;
      uint32_t ChildAI;
      if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
          IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
        AIChain[CI] = std::make_pair(Call, Kind);
        traceAICall(CI, CIKind, ChildMeta, ChildAI);
      } else {
        BaseAICalls[Call] = Kind;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Call, Kind, ParentMeta, ParentAI);
      else
        BaseAICalls[Call] = Kind;
    }
  }
}

void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
                                           CallInst *Parent, uint32_t Kind,
                                           const MDNode *ParentMeta,
                                           uint32_t ParentAI) {
  for (User *U : BitCast->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      uint32_t CIKind;
      const MDNode *ChildMeta;
      uint32_t ChildAI;
      if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
          IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
        AIChain[CI] = std::make_pair(Parent, Kind);
        traceAICall(CI, CIKind, ChildMeta, ChildAI);
      } else {
        BaseAICalls[Parent] = Kind;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
      else
        BaseAICalls[Parent] = Kind;
    }
  }
}

void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
                                       uint32_t Kind, const MDNode *ParentMeta,
                                       uint32_t ParentAI) {
  for (User *U : GEP->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      uint32_t CIKind;
      const MDNode *ChildMeta;
      uint32_t ChildAI;
      if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
          IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
        AIChain[CI] = std::make_pair(Parent, Kind);
        traceAICall(CI, CIKind, ChildMeta, ChildAI);
      } else {
        BaseAICalls[Parent] = Kind;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
      else
        BaseAICalls[Parent] = Kind;
    }
  }
}

void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
  AIChain.clear();
  BaseAICalls.clear();

  for (auto &BB : F)
    for (auto &I : BB) {
      uint32_t Kind;
      const MDNode *TypeMeta;
      uint32_t AccessIndex;
      auto *Call = dyn_cast<CallInst>(&I);
      if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex) ||
          AIChain.find(Call) != AIChain.end())
        continue;

      traceAICall(Call, Kind, TypeMeta, AccessIndex);
    }
}

/// Get access index from the preserve_*_access_index intrinsic calls.
bool BPFAbstractMemberAccess::getAccessIndex(const Value *IndexValue,
                                             uint64_t &AccessIndex) {
  const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
  if (!CV)
    return false;

  AccessIndex = CV->getValue().getZExtValue();
  return true;
}

/// Compute the base of the whole preserve_*_access_index chains, i.e., the base
/// pointer of the first preserve_*_access_index call, and construct the access
/// string, which will be the name of a global variable.
Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
                                                        std::string &AccessKey,
                                                        uint32_t Kind,
                                                        MDNode *&TypeMeta) {
  Value *Base = nullptr;
  std::string TypeName;
  std::stack<std::pair<CallInst *, uint32_t>> CallStack;

  // Put the access chain into a stack with the top as the head of the chain.
  while (Call) {
    CallStack.push(std::make_pair(Call, Kind));
    Kind = AIChain[Call].second;
    Call = AIChain[Call].first;
  }

  // The access offset from the base of the head of chain is also
  // calculated here as all debuginfo types are available.

  // Get type name and calculate the first index.
  // We only want to get type name from structure or union.
  // If user wants a relocation like
  //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
  // or
  //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
  // we will skip them.
  uint32_t FirstIndex = 0;
  uint32_t AccessOffset = 0;
  while (CallStack.size()) {
    auto StackElem = CallStack.top();
    Call = StackElem.first;
    Kind = StackElem.second;

    if (!Base)
      Base = Call->getArgOperand(0);

    MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    DIType *Ty = stripQualifiers(cast<DIType>(MDN));
    if (Kind == BPFPreserveUnionAI || Kind == BPFPreserveStructAI) {
      // struct or union type
      TypeName = Ty->getName();
      TypeMeta = Ty;
      AccessOffset += FirstIndex * Ty->getSizeInBits() >> 3;
      break;
    }

    // Array entries will always be consumed for accumulative initial index.
    CallStack.pop();

    // BPFPreserveArrayAI
    uint64_t AccessIndex;
    if (!getAccessIndex(Call->getArgOperand(2), AccessIndex))
      return nullptr;

    DIType *BaseTy = nullptr;
    bool CheckElemType = false;
    if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
      // array type
      assert(CTy->getTag() == dwarf::DW_TAG_array_type);


      FirstIndex += AccessIndex * calcArraySize(CTy, 1);
      BaseTy = stripQualifiers(CTy->getBaseType());
      CheckElemType = CTy->getElements().size() == 1;
    } else {
      // pointer type
      auto *DTy = cast<DIDerivedType>(Ty);
      assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);

      BaseTy = stripQualifiers(DTy->getBaseType());
      CTy = dyn_cast<DICompositeType>(BaseTy);
      if (!CTy) {
        CheckElemType = true;
      } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
        FirstIndex += AccessIndex;
        CheckElemType = true;
      } else {
        FirstIndex += AccessIndex * calcArraySize(CTy, 0);
      }
    }

    if (CheckElemType) {
      auto *CTy = dyn_cast<DICompositeType>(BaseTy);
      if (!CTy)
        return nullptr;

      unsigned CTag = CTy->getTag();
      if (CTag != dwarf::DW_TAG_structure_type && CTag != dwarf::DW_TAG_union_type)
        return nullptr;
      else
        TypeName = CTy->getName();
      TypeMeta = CTy;
      AccessOffset += FirstIndex * CTy->getSizeInBits() >> 3;
      break;
    }
  }
  assert(TypeName.size());
  AccessKey += std::to_string(FirstIndex);

  // Traverse the rest of access chain to complete offset calculation
  // and access key construction.
  while (CallStack.size()) {
    auto StackElem = CallStack.top();
    Call = StackElem.first;
    Kind = StackElem.second;
    CallStack.pop();

    // Access Index
    uint64_t AccessIndex;
    uint32_t ArgIndex = (Kind == BPFPreserveUnionAI) ? 1 : 2;
    if (!getAccessIndex(Call->getArgOperand(ArgIndex), AccessIndex))
      return nullptr;
    AccessKey += ":" + std::to_string(AccessIndex);

    MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    // At this stage, it cannot be pointer type.
    auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
    uint32_t Tag = CTy->getTag();
    if (Tag == dwarf::DW_TAG_structure_type) {
      auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      AccessOffset += MemberTy->getOffsetInBits() >> 3;
    } else if (Tag == dwarf::DW_TAG_array_type) {
      auto *EltTy = stripQualifiers(CTy->getBaseType());
      AccessOffset += AccessIndex * calcArraySize(CTy, 1) *
                      EltTy->getSizeInBits() >> 3;
    }
  }

  // Access key is the type name + access string, uniquely identifying
  // one kernel memory access.
  AccessKey = TypeName + ":" + std::to_string(AccessOffset) + "$" + AccessKey;

  return Base;
}

/// Call/Kind is the base preserve_*_access_index() call. Attempts to do
/// transformation to a chain of relocable GEPs.
bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
                                                uint32_t Kind) {
  std::string AccessKey;
  MDNode *TypeMeta;
  Value *Base =
      computeBaseAndAccessKey(Call, AccessKey, Kind, TypeMeta);
  if (!Base)
    return false;

  // Do the transformation
  // For any original GEP Call and Base %2 like
  //   %4 = bitcast %struct.net_device** %dev1 to i64*
  // it is transformed to:
  //   %6 = load sk_buff:50:$0:0:0:2:0
  //   %7 = bitcast %struct.sk_buff* %2 to i8*
  //   %8 = getelementptr i8, i8* %7, %6
  //   %9 = bitcast i8* %8 to i64*
  //   using %9 instead of %4
  // The original Call inst is removed.
  BasicBlock *BB = Call->getParent();
  GlobalVariable *GV;

  if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
    GV = new GlobalVariable(M, Type::getInt64Ty(BB->getContext()), false,
                            GlobalVariable::ExternalLinkage, NULL, AccessKey);
    GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
    GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
    GEPGlobals[AccessKey] = GV;
  } else {
    GV = GEPGlobals[AccessKey];
  }

  // Load the global variable.
  auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
  BB->getInstList().insert(Call->getIterator(), LDInst);

  // Generate a BitCast
  auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
  BB->getInstList().insert(Call->getIterator(), BCInst);

  // Generate a GetElementPtr
  auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
                                        BCInst, LDInst);
  BB->getInstList().insert(Call->getIterator(), GEP);

  // Generate a BitCast
  auto *BCInst2 = new BitCastInst(GEP, Call->getType());
  BB->getInstList().insert(Call->getIterator(), BCInst2);

  Call->replaceAllUsesWith(BCInst2);
  Call->eraseFromParent();

  return true;
}

bool BPFAbstractMemberAccess::doTransformation(Module &M) {
  bool Transformed = false;

  for (Function &F : M) {
    // Collect PreserveDIAccessIndex Intrinsic call chains.
    // The call chains will be used to generate the access
    // patterns similar to GEP.
    collectAICallChains(M, F);

    for (auto &C : BaseAICalls)
      Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
  }

  return removePreserveAccessIndexIntrinsic(M) || Transformed;
}
OpenPOWER on IntegriCloud