summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp
blob: 94f4914d19b00de6825dd0679ab84fee6f4788d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalityPredicates;

AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
                                         const GCNTargetMachine &TM) {
  using namespace TargetOpcode;

  auto scalarize = [=](const LegalityQuery &Query, unsigned TypeIdx) {
    const LLT &Ty = Query.Types[TypeIdx];
    return std::make_pair(TypeIdx, Ty.getElementType());
  };

  auto GetAddrSpacePtr = [&TM](unsigned AS) {
    return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
  };

  const LLT S1 = LLT::scalar(1);
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S256 = LLT::scalar(256);
  const LLT S512 = LLT::scalar(512);

  const LLT V2S16 = LLT::vector(2, 16);
  const LLT V4S16 = LLT::vector(4, 16);
  const LLT V8S16 = LLT::vector(8, 16);

  const LLT V2S32 = LLT::vector(2, 32);
  const LLT V3S32 = LLT::vector(3, 32);
  const LLT V4S32 = LLT::vector(4, 32);
  const LLT V5S32 = LLT::vector(5, 32);
  const LLT V6S32 = LLT::vector(6, 32);
  const LLT V7S32 = LLT::vector(7, 32);
  const LLT V8S32 = LLT::vector(8, 32);
  const LLT V9S32 = LLT::vector(9, 32);
  const LLT V10S32 = LLT::vector(10, 32);
  const LLT V11S32 = LLT::vector(11, 32);
  const LLT V12S32 = LLT::vector(12, 32);
  const LLT V13S32 = LLT::vector(13, 32);
  const LLT V14S32 = LLT::vector(14, 32);
  const LLT V15S32 = LLT::vector(15, 32);
  const LLT V16S32 = LLT::vector(16, 32);

  const LLT V2S64 = LLT::vector(2, 64);
  const LLT V3S64 = LLT::vector(3, 64);
  const LLT V4S64 = LLT::vector(4, 64);
  const LLT V5S64 = LLT::vector(5, 64);
  const LLT V6S64 = LLT::vector(6, 64);
  const LLT V7S64 = LLT::vector(7, 64);
  const LLT V8S64 = LLT::vector(8, 64);

  std::initializer_list<LLT> AllS32Vectors =
    {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
     V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
  std::initializer_list<LLT> AllS64Vectors =
    {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};

  const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
  const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
  const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
  const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
  const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);

  const LLT CodePtr = FlatPtr;

  const LLT AddrSpaces[] = {
    GlobalPtr,
    ConstantPtr,
    LocalPtr,
    FlatPtr,
    PrivatePtr
  };

  setAction({G_BRCOND, S1}, Legal);

  setAction({G_ADD, S32}, Legal);
  setAction({G_ASHR, S32}, Legal);
  setAction({G_ASHR, 1, S32}, Legal);
  setAction({G_SUB, S32}, Legal);
  setAction({G_MUL, S32}, Legal);

  // FIXME: 64-bit ones only legal for scalar
  getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
    .legalFor({S32, S1, S64, V2S32});

  getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
                               G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
    .legalFor({{S32, S1}});

  getActionDefinitionsBuilder(G_BITCAST)
    .legalForCartesianProduct({S32, V2S16})
    .legalForCartesianProduct({S64, V2S32, V4S16})
    .legalForCartesianProduct({V2S64, V4S32})
    // Don't worry about the size constraint.
    .legalIf(all(isPointer(0), isPointer(1)));

  getActionDefinitionsBuilder(G_FCONSTANT)
    .legalFor({S32, S64, S16});

  // G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
  // can fit in a register.
  // FIXME: We need to legalize several more operations before we can add
  // a test case for size > 512.
  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() <= 512;
    })
    .clampScalar(0, S1, S512);


  // FIXME: i1 operands to intrinsics should always be legal, but other i1
  // values may not be legal.  We need to figure out how to distinguish
  // between these two scenarios.
  // FIXME: Pointer types
  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({S1, S32, S64})
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0);

  setAction({G_FRAME_INDEX, PrivatePtr}, Legal);

  getActionDefinitionsBuilder({G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA})
      .legalFor({S32, S64})
      .fewerElementsIf(
          [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
          [=](const LegalityQuery &Query) { return scalarize(Query, 0); })
      .clampScalar(0, S32, S64);

  getActionDefinitionsBuilder(G_FPTRUNC)
    .legalFor({{S32, S64}, {S16, S32}});

  getActionDefinitionsBuilder(G_FPEXT)
    .legalFor({{S64, S32}, {S32, S16}})
    .lowerFor({{S64, S16}}); // FIXME: Implement

  getActionDefinitionsBuilder(G_FSUB)
      // Use actual fsub instruction
      .legalFor({S32})
      // Must use fadd + fneg
      .lowerFor({S64, S16, V2S16})
      .fewerElementsIf(
          [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
          [=](const LegalityQuery &Query) { return scalarize(Query, 0); })
      .clampScalar(0, S32, S64);

  setAction({G_FCMP, S1}, Legal);
  setAction({G_FCMP, 1, S32}, Legal);
  setAction({G_FCMP, 1, S64}, Legal);

  getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
    .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
               {S32, S1}, {S64, S1}, {S16, S1}});

  getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
    .legalFor({{S32, S32}, {S64, S32}});

  getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
    .legalFor({{S32, S32}, {S32, S64}});

  setAction({G_FPOW, S32}, Legal);
  setAction({G_FEXP2, S32}, Legal);
  setAction({G_FLOG2, S32}, Legal);

  getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND})
    .legalFor({S32, S64});

  for (LLT PtrTy : AddrSpaces) {
    LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
    setAction({G_GEP, PtrTy}, Legal);
    setAction({G_GEP, 1, IdxTy}, Legal);
  }

  setAction({G_BLOCK_ADDR, CodePtr}, Legal);

  setAction({G_ICMP, S1}, Legal);
  setAction({G_ICMP, 1, S32}, Legal);

  setAction({G_CTLZ, S32}, Legal);
  setAction({G_CTLZ_ZERO_UNDEF, S32}, Legal);
  setAction({G_CTTZ, S32}, Legal);
  setAction({G_CTTZ_ZERO_UNDEF, S32}, Legal);
  setAction({G_BSWAP, S32}, Legal);
  setAction({G_CTPOP, S32}, Legal);

  getActionDefinitionsBuilder(G_INTTOPTR)
    .legalIf([](const LegalityQuery &Query) {
      return true;
    });

  getActionDefinitionsBuilder(G_PTRTOINT)
    .legalIf([](const LegalityQuery &Query) {
      return true;
    });

  getActionDefinitionsBuilder({G_LOAD, G_STORE})
    .legalIf([=, &ST](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];

        // TODO: Decompose private loads into 4-byte components.
        // TODO: Illegal flat loads on SI
        switch (Ty0.getSizeInBits()) {
        case 32:
        case 64:
        case 128:
          return true;

        case 96:
          // XXX hasLoadX3
          return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);

        case 256:
        case 512:
          // TODO: constant loads
        default:
          return false;
        }
      });


  auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
    .legalForTypesWithMemSize({
        {S32, GlobalPtr, 8},
        {S32, GlobalPtr, 16},
        {S32, LocalPtr, 8},
        {S32, LocalPtr, 16},
        {S32, PrivatePtr, 8},
        {S32, PrivatePtr, 16}});
  if (ST.hasFlatAddressSpace()) {
    ExtLoads.legalForTypesWithMemSize({{S32, FlatPtr, 8},
                                       {S32, FlatPtr, 16}});
  }

  ExtLoads.clampScalar(0, S32, S32)
          .widenScalarToNextPow2(0)
          .unsupportedIfMemSizeNotPow2()
          .lower();

  auto &Atomics = getActionDefinitionsBuilder(
    {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
     G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
     G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
     G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
    .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
               {S64, GlobalPtr}, {S64, LocalPtr}});
  if (ST.hasFlatAddressSpace()) {
    Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
  }

  // TODO: Pointer types, any 32-bit or 64-bit vector
  getActionDefinitionsBuilder(G_SELECT)
    .legalFor({{S32, S1}, {S64, S1}, {V2S32, S1}, {V2S16, S1}})
    .clampScalar(0, S32, S64);

  setAction({G_SHL, S32}, Legal);
  setAction({G_SHL, 1, S32}, Legal);


  // FIXME: When RegBankSelect inserts copies, it will only create new
  // registers with scalar types.  This means we can end up with
  // G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer
  // operands.  In assert builds, the instruction selector will assert
  // if it sees a generic instruction which isn't legal, so we need to
  // tell it that scalar types are legal for pointer operands
  setAction({G_GEP, S64}, Legal);

  for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
    unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
    unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
    unsigned IdxTypeIdx = 2;

    getActionDefinitionsBuilder(Op)
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &VecTy = Query.Types[VecTypeIdx];
          const LLT &IdxTy = Query.Types[IdxTypeIdx];
          return VecTy.getSizeInBits() % 32 == 0 &&
            VecTy.getSizeInBits() <= 512 &&
            IdxTy.getSizeInBits() == 32;
        })
      .clampScalar(EltTypeIdx, S32, S64)
      .clampScalar(VecTypeIdx, S32, S64)
      .clampScalar(IdxTypeIdx, S32, S32);
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
    .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      });

  // FIXME: Doesn't handle extract of illegal sizes.
  getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
    .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        return (Ty0.getSizeInBits() % 32 == 0) &&
               (Ty1.getSizeInBits() % 32 == 0);
      });

  getActionDefinitionsBuilder(G_BUILD_VECTOR)
      .legalForCartesianProduct(AllS32Vectors, {S32})
      .legalForCartesianProduct(AllS64Vectors, {S64})
      .clampNumElements(0, V16S32, V16S32)
      .clampNumElements(0, V2S64, V8S64)
      .minScalarSameAs(1, 0)
      // FIXME: Sort of a hack to make progress on other legalizations.
      .legalIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getScalarSizeInBits() < 32;
      });

  // TODO: Support any combination of v2s32
  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
    .legalFor({{V4S32, V2S32},
               {V8S32, V2S32},
               {V8S32, V4S32},
               {V4S64, V2S64},
               {V4S16, V2S16},
               {V8S16, V2S16},
               {V8S16, V4S16}});

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT &Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    getActionDefinitionsBuilder(Op)
      // Break up vectors with weird elements into scalars
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
        [=](const LegalityQuery &Query) { return scalarize(Query, 0); })
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
        [=](const LegalityQuery &Query) { return scalarize(Query, 1); })
      .clampScalar(BigTyIdx, S32, S512)
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT &Ty = Query.Types[BigTyIdx];
          return !isPowerOf2_32(Ty.getSizeInBits()) &&
                 Ty.getSizeInBits() % 16 != 0;
        },
        [=](const LegalityQuery &Query) {
          // Pick the next power of 2, or a multiple of 64 over 128.
          // Whichever is smaller.
          const LLT &Ty = Query.Types[BigTyIdx];
          unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
          if (NewSizeInBits >= 256) {
            unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
            if (RoundedTo < NewSizeInBits)
              NewSizeInBits = RoundedTo;
          }
          return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
        })
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
      // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
      // worth considering the multiples of 64 since 2*192 and 2*384 are not
      // valid.
      .clampScalar(LitTyIdx, S16, S256)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];

          if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
            return false;
          if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
            return false;

          return BigTy.getSizeInBits() % 16 == 0 &&
                 LitTy.getSizeInBits() % 16 == 0 &&
                 BigTy.getSizeInBits() <= 512;
        })
      // Any vectors left are the wrong size. Scalarize them.
      .fewerElementsIf([](const LegalityQuery &Query) {
          return Query.Types[0].isVector();
        },
        [](const LegalityQuery &Query) {
          return std::make_pair(
            0, Query.Types[0].getElementType());
        })
      .fewerElementsIf([](const LegalityQuery &Query) {
          return Query.Types[1].isVector();
        },
        [](const LegalityQuery &Query) {
          return std::make_pair(
            1, Query.Types[1].getElementType());
        });

  }

  computeTables();
  verify(*ST.getInstrInfo());
}
OpenPOWER on IntegriCloud