summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
blob: 644e4fd558badf42e524570e0428ef0ceaf2c654 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass optimizes atomic operations by using a single lane of a wavefront
/// to perform the atomic operation, thus reducing contention on that memory
/// location.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

#define DEBUG_TYPE "amdgpu-atomic-optimizer"

using namespace llvm;

namespace {

enum DPP_CTRL {
  DPP_ROW_SR1 = 0x111,
  DPP_ROW_SR2 = 0x112,
  DPP_ROW_SR4 = 0x114,
  DPP_ROW_SR8 = 0x118,
  DPP_WF_SR1 = 0x138,
  DPP_ROW_BCAST15 = 0x142,
  DPP_ROW_BCAST31 = 0x143
};

struct ReplacementInfo {
  Instruction *I;
  Instruction::BinaryOps Op;
  unsigned ValIdx;
  bool ValDivergent;
};

class AMDGPUAtomicOptimizer : public FunctionPass,
                              public InstVisitor<AMDGPUAtomicOptimizer> {
private:
  SmallVector<ReplacementInfo, 8> ToReplace;
  const LegacyDivergenceAnalysis *DA;
  const DataLayout *DL;
  DominatorTree *DT;
  bool HasDPP;
  bool IsPixelShader;

  void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
                      unsigned ValIdx, bool ValDivergent) const;

  void setConvergent(CallInst *const CI) const;

public:
  static char ID;

  AMDGPUAtomicOptimizer() : FunctionPass(ID) {}

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LegacyDivergenceAnalysis>();
    AU.addRequired<TargetPassConfig>();
  }

  void visitAtomicRMWInst(AtomicRMWInst &I);
  void visitIntrinsicInst(IntrinsicInst &I);
};

} // namespace

char AMDGPUAtomicOptimizer::ID = 0;

char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;

bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
  if (skipFunction(F)) {
    return false;
  }

  DA = &getAnalysis<LegacyDivergenceAnalysis>();
  DL = &F.getParent()->getDataLayout();
  DominatorTreeWrapperPass *const DTW =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DT = DTW ? &DTW->getDomTree() : nullptr;
  const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
  const TargetMachine &TM = TPC.getTM<TargetMachine>();
  const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
  HasDPP = ST.hasDPP();
  IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;

  visit(F);

  const bool Changed = !ToReplace.empty();

  for (ReplacementInfo &Info : ToReplace) {
    optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
  }

  ToReplace.clear();

  return Changed;
}

void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
  // Early exit for unhandled address space atomic instructions.
  switch (I.getPointerAddressSpace()) {
  default:
    return;
  case AMDGPUAS::GLOBAL_ADDRESS:
  case AMDGPUAS::LOCAL_ADDRESS:
    break;
  }

  Instruction::BinaryOps Op;

  switch (I.getOperation()) {
  default:
    return;
  case AtomicRMWInst::Add:
    Op = Instruction::Add;
    break;
  case AtomicRMWInst::Sub:
    Op = Instruction::Sub;
    break;
  }

  const unsigned PtrIdx = 0;
  const unsigned ValIdx = 1;

  // If the pointer operand is divergent, then each lane is doing an atomic
  // operation on a different address, and we cannot optimize that.
  if (DA->isDivergent(I.getOperand(PtrIdx))) {
    return;
  }

  const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));

  // If the value operand is divergent, each lane is contributing a different
  // value to the atomic calculation. We can only optimize divergent values if
  // we have DPP available on our subtarget, and the atomic operation is 32
  // bits.
  if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
    return;
  }

  // If we get here, we can optimize the atomic using a single wavefront-wide
  // atomic operation to do the calculation for the entire wavefront, so
  // remember the instruction so we can come back to it.
  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};

  ToReplace.push_back(Info);
}

void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
  Instruction::BinaryOps Op;

  switch (I.getIntrinsicID()) {
  default:
    return;
  case Intrinsic::amdgcn_buffer_atomic_add:
  case Intrinsic::amdgcn_struct_buffer_atomic_add:
  case Intrinsic::amdgcn_raw_buffer_atomic_add:
    Op = Instruction::Add;
    break;
  case Intrinsic::amdgcn_buffer_atomic_sub:
  case Intrinsic::amdgcn_struct_buffer_atomic_sub:
  case Intrinsic::amdgcn_raw_buffer_atomic_sub:
    Op = Instruction::Sub;
    break;
  }

  const unsigned ValIdx = 0;

  const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));

  // If the value operand is divergent, each lane is contributing a different
  // value to the atomic calculation. We can only optimize divergent values if
  // we have DPP available on our subtarget, and the atomic operation is 32
  // bits.
  if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
    return;
  }

  // If any of the other arguments to the intrinsic are divergent, we can't
  // optimize the operation.
  for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
    if (DA->isDivergent(I.getOperand(Idx))) {
      return;
    }
  }

  // If we get here, we can optimize the atomic using a single wavefront-wide
  // atomic operation to do the calculation for the entire wavefront, so
  // remember the instruction so we can come back to it.
  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};

  ToReplace.push_back(Info);
}

void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
                                           Instruction::BinaryOps Op,
                                           unsigned ValIdx,
                                           bool ValDivergent) const {
  LLVMContext &Context = I.getContext();

  // Start building just before the instruction.
  IRBuilder<> B(&I);

  // If we are in a pixel shader, because of how we have to mask out helper
  // lane invocations, we need to record the entry and exit BB's.
  BasicBlock *PixelEntryBB = nullptr;
  BasicBlock *PixelExitBB = nullptr;

  // If we're optimizing an atomic within a pixel shader, we need to wrap the
  // entire atomic operation in a helper-lane check. We do not want any helper
  // lanes that are around only for the purposes of derivatives to take part
  // in any cross-lane communication, and we use a branch on whether the lane is
  // live to do this.
  if (IsPixelShader) {
    // Record I's original position as the entry block.
    PixelEntryBB = I.getParent();

    Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
    Instruction *const NonHelperTerminator =
        SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);

    // Record I's new position as the exit block.
    PixelExitBB = I.getParent();

    I.moveBefore(NonHelperTerminator);
    B.SetInsertPoint(&I);
  }

  Type *const Ty = I.getType();
  const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
  Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);

  // This is the value in the atomic operation we need to combine in order to
  // reduce the number of atomic operations.
  Value *const V = I.getOperand(ValIdx);

  // We need to know how many lanes are active within the wavefront, and we do
  // this by getting the exec register, which tells us all the lanes that are
  // active.
  MDNode *const RegName =
      llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
  Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
  CallInst *const Exec =
      B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
  setConvergent(Exec);

  // We need to know how many lanes are active within the wavefront that are
  // below us. If we counted each lane linearly starting from 0, a lane is
  // below us only if its associated index was less than ours. We do this by
  // using the mbcnt intrinsic.
  Value *const BitCast = B.CreateBitCast(Exec, VecTy);
  Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
  Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
  CallInst *const PartialMbcnt = B.CreateIntrinsic(
      Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
  CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
                                            {ExtractHi, PartialMbcnt});

  Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);

  Value *LaneOffset = nullptr;
  Value *NewV = nullptr;

  // If we have a divergent value in each lane, we need to combine the value
  // using DPP.
  if (ValDivergent) {
    // First we need to set all inactive invocations to 0, so that they can
    // correctly contribute to the final result.
    CallInst *const SetInactive = B.CreateIntrinsic(
        Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
    setConvergent(SetInactive);
    NewV = SetInactive;

    const unsigned Iters = 6;
    const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1,     DPP_ROW_SR2,
                                     DPP_ROW_SR4,     DPP_ROW_SR8,
                                     DPP_ROW_BCAST15, DPP_ROW_BCAST31};
    const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};

    // This loop performs an inclusive scan across the wavefront, with all lanes
    // active (by using the WWM intrinsic).
    for (unsigned Idx = 0; Idx < Iters; Idx++) {
      CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
                                              {NewV, B.getInt32(DPPCtrl[Idx]),
                                               B.getInt32(RowMask[Idx]),
                                               B.getInt32(0xf), B.getFalse()});
      setConvergent(DPP);
      Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);

      NewV = B.CreateBinOp(Op, NewV, WWM);
      NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
    }

    // NewV has returned the inclusive scan of V, but for the lane offset we
    // require an exclusive scan. We do this by shifting the values from the
    // entire wavefront right by 1, and by setting the bound_ctrl (last argument
    // to the intrinsic below) to true, we can guarantee that 0 will be shifted
    // into the 0'th invocation.
    CallInst *const DPP =
        B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
                          {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
                           B.getInt32(0xf), B.getTrue()});
    setConvergent(DPP);
    LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);

    // Read the value from the last lane, which has accumlated the values of
    // each active lane in the wavefront. This will be our new value with which
    // we will provide to the atomic operation.
    if (TyBitWidth == 64) {
      Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
      Value *const ExtractHi =
          B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
      CallInst *const ReadLaneLo = B.CreateIntrinsic(
          Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
      setConvergent(ReadLaneLo);
      CallInst *const ReadLaneHi = B.CreateIntrinsic(
          Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
      setConvergent(ReadLaneHi);
      Value *const PartialInsert = B.CreateInsertElement(
          UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
      Value *const Insert =
          B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
      NewV = B.CreateBitCast(Insert, Ty);
    } else if (TyBitWidth == 32) {
      CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
                                                   {}, {NewV, B.getInt32(63)});
      setConvergent(ReadLane);
      NewV = ReadLane;
    } else {
      llvm_unreachable("Unhandled atomic bit width");
    }
  } else {
    // Get the total number of active lanes we have by using popcount.
    Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
    Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);

    // Calculate the new value we will be contributing to the atomic operation
    // for the entire wavefront.
    NewV = B.CreateMul(V, CtpopCast);
    LaneOffset = B.CreateMul(V, MbcntCast);
  }

  // We only want a single lane to enter our new control flow, and we do this
  // by checking if there are any active lanes below us. Only one lane will
  // have 0 active lanes below us, so that will be the only one to progress.
  Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));

  // Store I's original basic block before we split the block.
  BasicBlock *const EntryBB = I.getParent();

  // We need to introduce some new control flow to force a single lane to be
  // active. We do this by splitting I's basic block at I, and introducing the
  // new block such that:
  // entry --> single_lane -\
  //       \------------------> exit
  Instruction *const SingleLaneTerminator =
      SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);

  // Move the IR builder into single_lane next.
  B.SetInsertPoint(SingleLaneTerminator);

  // Clone the original atomic operation into single lane, replacing the
  // original value with our newly created one.
  Instruction *const NewI = I.clone();
  B.Insert(NewI);
  NewI->setOperand(ValIdx, NewV);

  // Move the IR builder into exit next, and start inserting just before the
  // original instruction.
  B.SetInsertPoint(&I);

  // Create a PHI node to get our new atomic result into the exit block.
  PHINode *const PHI = B.CreatePHI(Ty, 2);
  PHI->addIncoming(UndefValue::get(Ty), EntryBB);
  PHI->addIncoming(NewI, SingleLaneTerminator->getParent());

  // We need to broadcast the value who was the lowest active lane (the first
  // lane) to all other lanes in the wavefront. We use an intrinsic for this,
  // but have to handle 64-bit broadcasts with two calls to this intrinsic.
  Value *BroadcastI = nullptr;

  if (TyBitWidth == 64) {
    Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
    Value *const ExtractHi =
        B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
    CallInst *const ReadFirstLaneLo =
        B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
    setConvergent(ReadFirstLaneLo);
    CallInst *const ReadFirstLaneHi =
        B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
    setConvergent(ReadFirstLaneHi);
    Value *const PartialInsert = B.CreateInsertElement(
        UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
    Value *const Insert =
        B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
    BroadcastI = B.CreateBitCast(Insert, Ty);
  } else if (TyBitWidth == 32) {
    CallInst *const ReadFirstLane =
        B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
    setConvergent(ReadFirstLane);
    BroadcastI = ReadFirstLane;
  } else {
    llvm_unreachable("Unhandled atomic bit width");
  }

  // Now that we have the result of our single atomic operation, we need to
  // get our individual lane's slice into the result. We use the lane offset we
  // previously calculated combined with the atomic result value we got from the
  // first lane, to get our lane's index into the atomic result.
  Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);

  if (IsPixelShader) {
    // Need a final PHI to reconverge to above the helper lane branch mask.
    B.SetInsertPoint(PixelExitBB->getFirstNonPHI());

    PHINode *const PHI = B.CreatePHI(Ty, 2);
    PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
    PHI->addIncoming(Result, I.getParent());
    I.replaceAllUsesWith(PHI);
  } else {
    // Replace the original atomic instruction with the new one.
    I.replaceAllUsesWith(Result);
  }

  // And delete the original.
  I.eraseFromParent();
}

void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
  CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
}

INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
                      "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
                    "AMDGPU atomic optimizations", false, false)

FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
  return new AMDGPUAtomicOptimizer();
}
OpenPOWER on IntegriCloud