1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64LegalizerInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalityPredicates;
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 64);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT s256 = LLT::scalar(256);
const LLT s512 = LLT::scalar(512);
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s8 = LLT::vector(8, 8);
const LLT v4s8 = LLT::vector(4, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s16 = LLT::vector(4, 16);
const LLT v2s16 = LLT::vector(2, 16);
const LLT v2s32 = LLT::vector(2, 32);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({p0, s1, s8, s16, s32, s64})
.clampScalar(0, s1, s64)
.widenScalarToNextPow2(0, 8);
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, s16, s32, s64})
.clampScalar(0, s16, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({s32, s64})
.clampScalar(0, s16, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL})
.legalFor({s32, s64, v2s32, v4s32, v2s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder(G_GEP)
.legalFor({{p0, s64}})
.clampScalar(1, s64, s64);
getActionDefinitionsBuilder(G_PTR_MASK).legalFor({p0});
getActionDefinitionsBuilder({G_LSHR, G_ASHR, G_SDIV, G_UDIV})
.legalFor({s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_SREM, G_UREM})
.lowerFor({s1, s8, s16, s32, s64});
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.lowerFor({{s64, s1}});
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO})
.legalFor({{s32, s1}, {s64, s1}});
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMA, G_FMUL, G_FDIV})
.legalFor({s32, s64});
getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
getActionDefinitionsBuilder(G_INSERT)
.unsupportedIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
return false;
return isPowerOf2_32(Ty1.getSizeInBits()) &&
(Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.maxScalarIf(typeInSet(0, {s32}), 1, s16)
.maxScalarIf(typeInSet(0, {s64}), 1, s32)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_EXTRACT)
.unsupportedIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty1 != s32 && Ty1 != s64)
return false;
if (Ty1 == p0)
return true;
return isPowerOf2_32(Ty0.getSizeInBits()) &&
(Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.maxScalarIf(typeInSet(1, {s32}), 0, s16)
.maxScalarIf(typeInSet(1, {s64}), 0, s32)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemSize({{s32, p0, 8},
{s32, p0, 16},
{s32, p0, 32},
{s64, p0, 64},
{p0, p0, 64},
{v2s32, p0, 64}})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
// TODO: We could support sum-of-pow2's but the lowering code doesn't know
// how to do that yet.
.unsupportedIfMemSizeNotPow2()
// Lower anything left over into G_*EXT and G_LOAD
.lower();
getActionDefinitionsBuilder(G_LOAD)
.legalForTypesWithMemSize({{s8, p0, 8},
{s16, p0, 16},
{s32, p0, 32},
{s64, p0, 64},
{p0, p0, 64},
{v2s32, p0, 64}})
// These extends are also legal
.legalForTypesWithMemSize({{s32, p0, 8},
{s32, p0, 16}})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0)
// TODO: We could support sum-of-pow2's but the lowering code doesn't know
// how to do that yet.
.unsupportedIfMemSizeNotPow2()
// Lower any any-extending loads left into G_ANYEXT and G_LOAD
.lowerIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].Size * 8;
})
.clampNumElements(0, v2s32, v2s32);
getActionDefinitionsBuilder(G_STORE)
.legalForTypesWithMemSize({{s8, p0, 8},
{s16, p0, 16},
{s32, p0, 32},
{s64, p0, 64},
{p0, p0, 64},
{v2s32, p0, 64}})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0)
// TODO: We could support sum-of-pow2's but the lowering code doesn't know
// how to do that yet.
.unsupportedIfMemSizeNotPow2()
.lowerIf([=](const LegalityQuery &Query) {
return Query.Types[0].isScalar() &&
Query.Types[0].getSizeInBits() != Query.MMODescrs[0].Size * 8;
})
.clampNumElements(0, v2s32, v2s32);
// Constants
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0, s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({s32, s64})
.clampScalar(0, s32, s64);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{s32, s32}, {s32, s64}, {s32, p0}})
.clampScalar(0, s32, s32)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_FCMP)
.legalFor({{s32, s32}, {s32, s64}})
.clampScalar(0, s32, s32)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
// Extensions
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalForCartesianProduct({s8, s16, s32, s64}, {s1, s8, s16, s32});
// FP conversions
getActionDefinitionsBuilder(G_FPTRUNC).legalFor(
{{s16, s32}, {s16, s64}, {s32, s64}});
getActionDefinitionsBuilder(G_FPEXT).legalFor(
{{s32, s16}, {s64, s16}, {s64, s32}});
// Conversions
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalForCartesianProduct({s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
// Control-flow
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
// Select
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
// Pointer-handling
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR)
.unsupportedIf([&](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
})
.legalFor({{p0, s64}});
// Casts for 32 and 64-bit width type are just copies.
// Same for 128-bit width type, except they are on the FPR bank.
getActionDefinitionsBuilder(G_BITCAST)
// FIXME: This is wrong since G_BITCAST is not allowed to change the
// number of bits but it's what the previous code described and fixing
// it breaks tests.
.legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
v8s16, v4s16, v2s16, v4s32, v2s32, v2s64});
getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
.customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
if (ST.hasLSE()) {
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
.lowerIf(all(
typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
.legalIf(all(
typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
}
getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
auto scalarize =
[](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
return std::make_pair(TypeIdx, Ty.getElementType());
};
// FIXME: This rule is horrible, but specifies the same as what we had
// before with the particularly strange definitions removed (e.g.
// s8 = G_MERGE_VALUES s32, s32).
// Part of the complexity comes from these ops being extremely flexible. For
// example, you can build/decompose vectors with it, concatenate vectors,
// etc. and in addition to this you can also bitcast with it at the same
// time. We've been considering breaking it up into multiple ops to make it
// more manageable throughout the backend.
getActionDefinitionsBuilder(Op)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
[=](const LegalityQuery &Query) { return scalarize(Query, 0); })
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
[=](const LegalityQuery &Query) { return scalarize(Query, 1); })
// Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
// or 384.
.clampScalar(BigTyIdx, s8, s512)
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 64 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1
<< Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, s8, s256)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
// So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
// s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
// At this point it's simple enough to accept the legal types.
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
return false;
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
return false;
return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
})
// Any vectors left are the wrong size. Scalarize them.
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
0, Query.Types[0].getElementType());
})
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
1, Query.Types[1].getElementType());
});
}
computeTables();
verify(*ST.getInstrInfo());
}
bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_VAARG:
return legalizeVaArg(MI, MRI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MIRBuilder.setInstr(MI);
MachineFunction &MF = MIRBuilder.getMF();
unsigned Align = MI.getOperand(2).getImm();
unsigned Dst = MI.getOperand(0).getReg();
unsigned ListPtr = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(ListPtr);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
unsigned List = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildLoad(
List, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
PtrSize, /* Align = */ PtrSize));
unsigned DstPtr;
if (Align > PtrSize) {
// Realign the list to the actual required alignment.
auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1);
unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(ListTmp, List, AlignMinus1->getOperand(0).getReg());
DstPtr = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
} else
DstPtr = List;
uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
MIRBuilder.buildLoad(
Dst, DstPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
ValSize, std::max(Align, PtrSize)));
unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize));
unsigned NewList = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewList, DstPtr, SizeReg);
MIRBuilder.buildStore(
NewList, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
PtrSize, /* Align = */ PtrSize));
MI.eraseFromParent();
return true;
}
|