1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
//===-- TimeProfiler.cpp - Hierarchical Time Profiler ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hierarchical time profiler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <mutex>
#include <string>
#include <vector>
using namespace std::chrono;
namespace {
std::mutex Mu;
std::vector<std::unique_ptr<llvm::TimeTraceProfiler>>
ThreadTimeTraceProfilerInstances; // guarded by Mu
} // namespace
namespace llvm {
thread_local std::unique_ptr<TimeTraceProfiler> TimeTraceProfilerInstance =
nullptr;
typedef duration<steady_clock::rep, steady_clock::period> DurationType;
typedef time_point<steady_clock> TimePointType;
typedef std::pair<size_t, DurationType> CountAndDurationType;
typedef std::pair<std::string, CountAndDurationType>
NameAndCountAndDurationType;
struct Entry {
const TimePointType Start;
TimePointType End;
const std::string Name;
const std::string Detail;
Entry(TimePointType &&S, TimePointType &&E, std::string &&N, std::string &&Dt)
: Start(std::move(S)), End(std::move(E)), Name(std::move(N)),
Detail(std::move(Dt)) {}
// Calculate timings for FlameGraph. Cast time points to microsecond precision
// rather than casting duration. This avoid truncation issues causing inner
// scopes overruning outer scopes.
steady_clock::rep getFlameGraphStartUs(TimePointType StartTime) const {
return (time_point_cast<microseconds>(Start) -
time_point_cast<microseconds>(StartTime))
.count();
}
steady_clock::rep getFlameGraphDurUs() const {
return (time_point_cast<microseconds>(End) -
time_point_cast<microseconds>(Start))
.count();
}
};
struct TimeTraceProfiler {
TimeTraceProfiler(unsigned TimeTraceGranularity = 0, StringRef ProcName = "")
: StartTime(steady_clock::now()), ProcName(ProcName),
Tid(llvm::get_threadid()), TimeTraceGranularity(TimeTraceGranularity) {}
void begin(std::string Name, llvm::function_ref<std::string()> Detail) {
Stack.emplace_back(steady_clock::now(), TimePointType(), std::move(Name),
Detail());
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
auto &E = Stack.back();
E.End = steady_clock::now();
// Check that end times monotonically increase.
assert((Entries.empty() ||
(E.getFlameGraphStartUs(StartTime) + E.getFlameGraphDurUs() >=
Entries.back().getFlameGraphStartUs(StartTime) +
Entries.back().getFlameGraphDurUs())) &&
"TimeProfiler scope ended earlier than previous scope");
// Calculate duration at full precision for overall counts.
DurationType Duration = E.End - E.Start;
// Only include sections longer or equal to TimeTraceGranularity msec.
if (duration_cast<microseconds>(Duration).count() >= TimeTraceGranularity)
Entries.emplace_back(E);
// Track total time taken by each "name", but only the topmost levels of
// them; e.g. if there's a template instantiation that instantiates other
// templates from within, we only want to add the topmost one. "topmost"
// happens to be the ones that don't have any currently open entries above
// itself.
if (std::find_if(++Stack.rbegin(), Stack.rend(), [&](const Entry &Val) {
return Val.Name == E.Name;
}) == Stack.rend()) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += Duration;
}
Stack.pop_back();
}
// Write events from this TimeTraceProfilerInstance and
// ThreadTimeTraceProfilerInstances.
void Write(raw_pwrite_stream &OS) {
// Acquire Mutex as reading ThreadTimeTraceProfilerInstances.
std::lock_guard<std::mutex> Lock(Mu);
assert(Stack.empty() &&
"All profiler sections should be ended when calling Write");
assert(std::all_of(ThreadTimeTraceProfilerInstances.begin(),
ThreadTimeTraceProfilerInstances.end(),
[](const auto &TTP) { return TTP->Stack.empty(); }) &&
"All profiler sections should be ended when calling Write");
json::OStream J(OS);
J.objectBegin();
J.attributeBegin("traceEvents");
J.arrayBegin();
// Emit all events for the main flame graph.
auto writeEvent = [&](auto &E, uint64_t Tid) {
auto StartUs = E.getFlameGraphStartUs(StartTime);
auto DurUs = E.getFlameGraphDurUs();
J.object([&]{
J.attribute("pid", 1);
J.attribute("tid", int64_t(Tid));
J.attribute("ph", "X");
J.attribute("ts", StartUs);
J.attribute("dur", DurUs);
J.attribute("name", E.Name);
if (!E.Detail.empty()) {
J.attributeObject("args", [&] { J.attribute("detail", E.Detail); });
}
});
};
for (const auto &E : Entries) {
writeEvent(E, this->Tid);
}
for (const auto &TTP : ThreadTimeTraceProfilerInstances) {
for (const auto &E : TTP->Entries) {
writeEvent(E, TTP->Tid);
}
}
// Emit totals by section name as additional "thread" events, sorted from
// longest one.
// Find highest used thread id.
uint64_t MaxTid = this->Tid;
for (const auto &TTP : ThreadTimeTraceProfilerInstances) {
MaxTid = std::max(MaxTid, TTP->Tid);
}
// Combine all CountAndTotalPerName from threads into one.
StringMap<CountAndDurationType> AllCountAndTotalPerName;
auto combineStat = [&](auto &Stat) {
std::string Key = Stat.getKey();
auto Value = Stat.getValue();
auto &CountAndTotal = AllCountAndTotalPerName[Key];
CountAndTotal.first += Value.first;
CountAndTotal.second += Value.second;
};
for (const auto &Stat : CountAndTotalPerName) {
combineStat(Stat);
}
for (const auto &TTP : ThreadTimeTraceProfilerInstances) {
for (const auto &Stat : TTP->CountAndTotalPerName) {
combineStat(Stat);
}
}
std::vector<NameAndCountAndDurationType> SortedTotals;
SortedTotals.reserve(AllCountAndTotalPerName.size());
for (const auto &Total : AllCountAndTotalPerName)
SortedTotals.emplace_back(Total.getKey(), Total.getValue());
llvm::sort(SortedTotals.begin(), SortedTotals.end(),
[](const NameAndCountAndDurationType &A,
const NameAndCountAndDurationType &B) {
return A.second.second > B.second.second;
});
// Report totals on separate threads of tracing file.
uint64_t TotalTid = MaxTid + 1;
for (const auto &Total : SortedTotals) {
auto DurUs = duration_cast<microseconds>(Total.second.second).count();
auto Count = AllCountAndTotalPerName[Total.first].first;
J.object([&]{
J.attribute("pid", 1);
J.attribute("tid", int64_t(TotalTid));
J.attribute("ph", "X");
J.attribute("ts", 0);
J.attribute("dur", DurUs);
J.attribute("name", "Total " + Total.first);
J.attributeObject("args", [&] {
J.attribute("count", int64_t(Count));
J.attribute("avg ms", int64_t(DurUs / Count / 1000));
});
});
++TotalTid;
}
// Emit metadata event with process name.
J.object([&] {
J.attribute("cat", "");
J.attribute("pid", 1);
J.attribute("tid", 0);
J.attribute("ts", 0);
J.attribute("ph", "M");
J.attribute("name", "process_name");
J.attributeObject("args", [&] { J.attribute("name", ProcName); });
});
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
}
SmallVector<Entry, 16> Stack;
SmallVector<Entry, 128> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
const TimePointType StartTime;
const std::string ProcName;
const uint64_t Tid;
// Minimum time granularity (in microseconds)
const unsigned TimeTraceGranularity;
};
void timeTraceProfilerInitialize(unsigned TimeTraceGranularity,
StringRef ProcName) {
assert(TimeTraceProfilerInstance == nullptr &&
"Profiler should not be initialized");
TimeTraceProfilerInstance = std::make_unique<TimeTraceProfiler>(
TimeTraceGranularity, llvm::sys::path::filename(ProcName));
}
// Removes all TimeTraceProfilerInstances.
void timeTraceProfilerCleanup() {
TimeTraceProfilerInstance.reset();
std::lock_guard<std::mutex> Lock(Mu);
ThreadTimeTraceProfilerInstances.clear();
}
// Finish TimeTraceProfilerInstance on a worker thread.
// This doesn't remove the instance, just moves the pointer to global vector.
void timeTraceProfilerFinishThread() {
std::lock_guard<std::mutex> Lock(Mu);
ThreadTimeTraceProfilerInstances.push_back(
std::move(TimeTraceProfilerInstance));
}
void timeTraceProfilerWrite(raw_pwrite_stream &OS) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
TimeTraceProfilerInstance->Write(OS);
}
void timeTraceProfilerBegin(StringRef Name, StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, [&]() { return Detail; });
}
void timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, Detail);
}
void timeTraceProfilerEnd() {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end();
}
} // namespace llvm
|