1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
//===-- TimeProfiler.cpp - Hierarchical Time Profiler ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Hierarchical time profiler implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/FileSystem.h"
#include <cassert>
#include <chrono>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std::chrono;
namespace llvm {
TimeTraceProfiler *TimeTraceProfilerInstance = nullptr;
static std::string escapeString(StringRef Src) {
std::string OS;
for (const unsigned char &C : Src) {
switch (C) {
case '"':
case '/':
case '\\':
case '\b':
case '\f':
case '\n':
case '\r':
case '\t':
OS += '\\';
OS += C;
break;
default:
if (isPrint(C)) {
OS += C;
}
}
}
return OS;
}
typedef duration<steady_clock::rep, steady_clock::period> DurationType;
typedef std::pair<size_t, DurationType> CountAndDurationType;
typedef std::pair<std::string, CountAndDurationType>
NameAndCountAndDurationType;
struct Entry {
time_point<steady_clock> Start;
DurationType Duration;
std::string Name;
std::string Detail;
};
struct TimeTraceProfiler {
TimeTraceProfiler() {
Stack.reserve(8);
Entries.reserve(128);
StartTime = steady_clock::now();
}
void begin(std::string Name, llvm::function_ref<std::string()> Detail) {
Entry E = {steady_clock::now(), {}, Name, Detail()};
Stack.push_back(std::move(E));
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
auto &E = Stack.back();
E.Duration = steady_clock::now() - E.Start;
// Only include sections longer than 500us.
if (duration_cast<microseconds>(E.Duration).count() > 500)
Entries.emplace_back(E);
// Track total time taken by each "name", but only the topmost levels of
// them; e.g. if there's a template instantiation that instantiates other
// templates from within, we only want to add the topmost one. "topmost"
// happens to be the ones that don't have any currently open entries above
// itself.
if (std::find_if(++Stack.rbegin(), Stack.rend(), [&](const Entry &Val) {
return Val.Name == E.Name;
}) == Stack.rend()) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += E.Duration;
}
Stack.pop_back();
}
void Write(std::unique_ptr<raw_pwrite_stream> &OS) {
assert(Stack.empty() &&
"All profiler sections should be ended when calling Write");
*OS << "{ \"traceEvents\": [\n";
// Emit all events for the main flame graph.
for (const auto &E : Entries) {
auto StartUs = duration_cast<microseconds>(E.Start - StartTime).count();
auto DurUs = duration_cast<microseconds>(E.Duration).count();
*OS << "{ \"pid\":1, \"tid\":0, \"ph\":\"X\", \"ts\":" << StartUs
<< ", \"dur\":" << DurUs << ", \"name\":\"" << escapeString(E.Name)
<< "\", \"args\":{ \"detail\":\"" << escapeString(E.Detail)
<< "\"} },\n";
}
// Emit totals by section name as additional "thread" events, sorted from
// longest one.
int Tid = 1;
std::vector<NameAndCountAndDurationType> SortedTotals;
SortedTotals.reserve(CountAndTotalPerName.size());
for (const auto &E : CountAndTotalPerName) {
SortedTotals.emplace_back(E.getKey(), E.getValue());
}
std::sort(SortedTotals.begin(), SortedTotals.end(),
[](const NameAndCountAndDurationType &A,
const NameAndCountAndDurationType &B) {
return A.second.second > B.second.second;
});
for (const auto &E : SortedTotals) {
auto DurUs = duration_cast<microseconds>(E.second.second).count();
auto Count = CountAndTotalPerName[E.first].first;
*OS << "{ \"pid\":1, \"tid\":" << Tid << ", \"ph\":\"X\", \"ts\":" << 0
<< ", \"dur\":" << DurUs << ", \"name\":\"Total "
<< escapeString(E.first) << "\", \"args\":{ \"count\":" << Count
<< ", \"avg ms\":" << (DurUs / Count / 1000) << "} },\n";
++Tid;
}
// Emit metadata event with process name.
*OS << "{ \"cat\":\"\", \"pid\":1, \"tid\":0, \"ts\":0, \"ph\":\"M\", "
"\"name\":\"process_name\", \"args\":{ \"name\":\"clang\" } }\n";
*OS << "] }\n";
}
std::vector<Entry> Stack;
std::vector<Entry> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
time_point<steady_clock> StartTime;
};
void timeTraceProfilerInitialize() {
assert(TimeTraceProfilerInstance == nullptr &&
"Profiler should not be initialized");
TimeTraceProfilerInstance = new TimeTraceProfiler();
}
void timeTraceProfilerCleanup() {
delete TimeTraceProfilerInstance;
TimeTraceProfilerInstance = nullptr;
}
void timeTraceProfilerWrite(std::unique_ptr<raw_pwrite_stream> &OS) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
TimeTraceProfilerInstance->Write(OS);
}
void timeTraceProfilerBegin(StringRef Name, StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, [&]() { return Detail; });
}
void timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, Detail);
}
void timeTraceProfilerEnd() {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end();
}
} // namespace llvm
|