summaryrefslogtreecommitdiffstats
path: root/llvm/lib/ProfileData/InstrProfWriter.cpp
blob: e3018a92e5ef06fbe0a4e521c4eeec510f67ad66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"

using namespace llvm;

namespace {
class InstrProfRecordTrait {
public:
  typedef StringRef key_type;
  typedef StringRef key_type_ref;

  typedef const InstrProfWriter::ProfilingData *const data_type;
  typedef const InstrProfWriter::ProfilingData *const data_type_ref;

  typedef uint64_t hash_value_type;
  typedef uint64_t offset_type;

  static hash_value_type ComputeHash(key_type_ref K) {
    return IndexedInstrProf::ComputeHash(IndexedInstrProf::HashType, K);
  }

  static std::pair<offset_type, offset_type>
  EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
    using namespace llvm::support;
    endian::Writer<little> LE(Out);

    offset_type N = K.size();
    LE.write<offset_type>(N);

    offset_type M = 0;
    for (const auto &ProfileData : *V) {
      M += sizeof(uint64_t); // The function hash
      M += sizeof(uint64_t); // The size of the Counts vector
      M += ProfileData.second.Counts.size() * sizeof(uint64_t);

      // Value data
      M += sizeof(uint64_t); // Number of value kinds with value sites.
      for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
        const std::vector<InstrProfValueSiteRecord> &ValueSites =
            ProfileData.second.getValueSitesForKind(Kind);
        if (ValueSites.empty())
          continue;
        M += sizeof(uint64_t); // Value kind
        M += sizeof(uint64_t); // The number of value sites for given value kind
        for (InstrProfValueSiteRecord I : ValueSites) {
          M += sizeof(uint64_t); // Number of value data pairs at a value site
          M += 2 * sizeof(uint64_t) * I.ValueData.size(); // Value data pairs
        }
      }
    }
    LE.write<offset_type>(M);

    return std::make_pair(N, M);
  }

  static void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N){
    Out.write(K.data(), N);
  }

  static void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V,
                       offset_type) {
    using namespace llvm::support;
    endian::Writer<little> LE(Out);
    for (const auto &ProfileData : *V) {
      LE.write<uint64_t>(ProfileData.first); // Function hash
      LE.write<uint64_t>(ProfileData.second.Counts.size());
      for (uint64_t I : ProfileData.second.Counts)
        LE.write<uint64_t>(I);

      // Compute the number of value kinds with value sites.
      uint64_t NumValueKinds = 0;
      for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
        NumValueKinds +=
            !(ProfileData.second.getValueSitesForKind(Kind).empty());
      LE.write<uint64_t>(NumValueKinds);

      // Write value data
      for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
        const std::vector<InstrProfValueSiteRecord> &ValueSites =
            ProfileData.second.getValueSitesForKind(Kind);
        if (ValueSites.empty())
          continue;
        LE.write<uint64_t>(Kind); // Write value kind
        // Write number of value sites for current value kind
        LE.write<uint64_t>(ValueSites.size());
        for (InstrProfValueSiteRecord I : ValueSites) {
          // Write number of value data pairs at this value site
          LE.write<uint64_t>(I.ValueData.size());
          for (auto V : I.ValueData) {
            if (Kind == IPVK_IndirectCallTarget)
              LE.write<uint64_t>(ComputeHash((const char *)V.first));
            else
              LE.write<uint64_t>(V.first);
            LE.write<uint64_t>(V.second);
          }
        }
      }
    }
  }
};
}

static std::error_code combineInstrProfRecords(InstrProfRecord &Dest,
                                               InstrProfRecord &Source,
                                               uint64_t &MaxFunctionCount) {
  // If the number of counters doesn't match we either have bad data
  // or a hash collision.
  if (Dest.Counts.size() != Source.Counts.size())
    return instrprof_error::count_mismatch;

  for (size_t I = 0, E = Source.Counts.size(); I < E; ++I) {
    if (Dest.Counts[I] + Source.Counts[I] < Dest.Counts[I])
      return instrprof_error::counter_overflow;
    Dest.Counts[I] += Source.Counts[I];
  }

  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {

    std::vector<InstrProfValueSiteRecord> &SourceValueSites =
        Source.getValueSitesForKind(Kind);
    if (SourceValueSites.empty())
      continue;

    std::vector<InstrProfValueSiteRecord> &DestValueSites =
        Dest.getValueSitesForKind(Kind);

    if (DestValueSites.empty()) {
      DestValueSites.swap(SourceValueSites);
      continue;
    }

    if (DestValueSites.size() != SourceValueSites.size())
      return instrprof_error::value_site_count_mismatch;
    for (size_t I = 0, E = SourceValueSites.size(); I < E; ++I)
      DestValueSites[I].mergeValueData(SourceValueSites[I]);
  }

  // We keep track of the max function count as we go for simplicity.
  if (Dest.Counts[0] > MaxFunctionCount)
    MaxFunctionCount = Dest.Counts[0];

  return instrprof_error::success;
}

void InstrProfWriter::updateStringTableReferences(InstrProfRecord &I) {
  I.Name = StringTable.insertString(I.Name);
  for (auto &VSite : I.IndirectCallSites)
    for (auto &VData : VSite.ValueData)
      VData.first =
          (uint64_t)StringTable.insertString((const char *)VData.first);
}

std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I) {
  updateStringTableReferences(I);
  auto &ProfileDataMap = FunctionData[I.Name];

  auto Where = ProfileDataMap.find(I.Hash);
  if (Where == ProfileDataMap.end()) {
    // We've never seen a function with this name and hash, add it.
    ProfileDataMap[I.Hash] = I;

    // We keep track of the max function count as we go for simplicity.
    if (I.Counts[0] > MaxFunctionCount)
      MaxFunctionCount = I.Counts[0];
    return instrprof_error::success;
  }

  // We're updating a function we've seen before.
  return combineInstrProfRecords(Where->second, I, MaxFunctionCount);
}

std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) {
  OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator;

  // Populate the hash table generator.
  for (const auto &I : FunctionData)
    Generator.insert(I.getKey(), &I.getValue());

  using namespace llvm::support;
  endian::Writer<little> LE(OS);

  // Write the header.
  IndexedInstrProf::Header Header;
  Header.Magic = IndexedInstrProf::Magic;
  Header.Version = IndexedInstrProf::Version;
  Header.MaxFunctionCount = MaxFunctionCount;
  Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
  Header.HashOffset = 0;
  int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);

  // Only write out all the fields execpt 'HashOffset'. We need
  // to remember the offset of that field to allow back patching
  // later.
  for (int I = 0; I < N - 1; I++)
    LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]);

  // Save a space to write the hash table start location.
  uint64_t HashTableStartLoc = OS.tell();
  // Reserve the space for HashOffset field.
  LE.write<uint64_t>(0);
  // Write the hash table.
  uint64_t HashTableStart = Generator.Emit(OS);

  return std::make_pair(HashTableStartLoc, HashTableStart);
}

void InstrProfWriter::write(raw_fd_ostream &OS) {
  // Write the hash table.
  auto TableStart = writeImpl(OS);

  // Go back and fill in the hash table start.
  using namespace support;
  OS.seek(TableStart.first);
  // Now patch the HashOffset field previously reserved.
  endian::Writer<little>(OS).write<uint64_t>(TableStart.second);
}

std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
  std::string Data;
  llvm::raw_string_ostream OS(Data);
  // Write the hash table.
  auto TableStart = writeImpl(OS);
  OS.flush();

  // Go back and fill in the hash table start.
  using namespace support;
  uint64_t Bytes = endian::byte_swap<uint64_t, little>(TableStart.second);
  Data.replace(TableStart.first, sizeof(uint64_t), (const char *)&Bytes,
               sizeof(uint64_t));

  // Return this in an aligned memory buffer.
  return MemoryBuffer::getMemBufferCopy(Data);
}
OpenPOWER on IntegriCloud