summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Fuzzer/FuzzerTracePC.cpp
blob: cfaf9c5e57153aee116e828ec65ea765258402ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Trace PCs.
// This module implements __sanitizer_cov_trace_pc_guard[_init],
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
//
//===----------------------------------------------------------------------===//

#include "FuzzerCorpus.h"
#include "FuzzerDefs.h"
#include "FuzzerDictionary.h"
#include "FuzzerTracePC.h"
#include "FuzzerValueBitMap.h"

namespace fuzzer {

TracePC TPC;

void TracePC::HandleTrace(uint32_t *Guard, uintptr_t PC) {
  uint32_t Idx = *Guard;
  if (!Idx) return;
  uint8_t *CounterPtr = &Counters[Idx % kNumCounters];
  uint8_t Counter = *CounterPtr;
  if (Counter == 0) {
    if (!PCs[Idx % kNumPCs]) {
      AddNewPCID(Idx);
      TotalPCCoverage++;
      PCs[Idx % kNumPCs] = PC;
    }
  }
  if (UseCounters) {
    if (Counter < 128)
      *CounterPtr = Counter + 1;
    else
      *Guard = 0;
  } else {
    *CounterPtr = 1;
    *Guard = 0;
  }
}

void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
  if (Start == Stop || *Start) return;
  assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
  for (uint32_t *P = Start; P < Stop; P++)
    *P = ++NumGuards;
  Modules[NumModules].Start = Start;
  Modules[NumModules].Stop = Stop;
  NumModules++;
}

void TracePC::PrintModuleInfo() {
  Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
  for (size_t i = 0; i < NumModules; i++)
    Printf("[%p, %p), ", Modules[i].Start, Modules[i].Stop);
  Printf("\n");
}

void TracePC::ResetGuards() {
  uint32_t N = 0;
  for (size_t M = 0; M < NumModules; M++)
    for (uint32_t *X = Modules[M].Start, *End = Modules[M].Stop; X < End; X++)
      *X = ++N;
  assert(N == NumGuards);
}

size_t TracePC::FinalizeTrace(InputCorpus *C, size_t InputSize, bool Shrink) {
  if (!UsingTracePcGuard()) return 0;
  size_t Res = 0;
  const size_t Step = 8;
  assert(reinterpret_cast<uintptr_t>(Counters) % Step == 0);
  size_t N = Min(kNumCounters, NumGuards + 1);
  N = (N + Step - 1) & ~(Step - 1);  // Round up.
  for (size_t Idx = 0; Idx < N; Idx += Step) {
    uint64_t Bundle = *reinterpret_cast<uint64_t*>(&Counters[Idx]);
    if (!Bundle) continue;
    for (size_t i = Idx; i < Idx + Step; i++) {
      uint8_t Counter = (Bundle >> (i * 8)) & 0xff;
      if (!Counter) continue;
      Counters[i] = 0;
      unsigned Bit = 0;
      /**/ if (Counter >= 128) Bit = 7;
      else if (Counter >= 32) Bit = 6;
      else if (Counter >= 16) Bit = 5;
      else if (Counter >= 8) Bit = 4;
      else if (Counter >= 4) Bit = 3;
      else if (Counter >= 3) Bit = 2;
      else if (Counter >= 2) Bit = 1;
      size_t Feature = (i * 8 + Bit);
      if (C->AddFeature(Feature, InputSize, Shrink))
        Res++;
    }
  }
  if (UseValueProfile)
    ValueProfileMap.ForEach([&](size_t Idx) {
      if (C->AddFeature(NumGuards + Idx, InputSize, Shrink))
        Res++;
    });
  return Res;
}

void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
  const uintptr_t kBits = 12;
  const uintptr_t kMask = (1 << kBits) - 1;
  uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
  HandleValueProfile(Idx);
}

void TracePC::PrintCoverage() {
  Printf("COVERAGE:\n");
  for (size_t i = 0; i < Min(NumGuards + 1, kNumPCs); i++) {
    if (PCs[i])
      PrintPC("COVERED: %p %F %L\n", "COVERED: %p\n", PCs[i]);
  }
}

// Value profile.
// We keep track of various values that affect control flow.
// These values are inserted into a bit-set-based hash map.
// Every new bit in the map is treated as a new coverage.
//
// For memcmp/strcmp/etc the interesting value is the length of the common
// prefix of the parameters.
// For cmp instructions the interesting value is a XOR of the parameters.
// The interesting value is mixed up with the PC and is then added to the map.

void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
                              size_t n) {
  if (!n) return;
  size_t Len = std::min(n, (size_t)32);
  const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
  const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
  size_t I = 0;
  for (; I < Len; I++)
    if (A1[I] != A2[I])
      break;
  size_t PC = reinterpret_cast<size_t>(caller_pc);
  size_t Idx = I;
  // if (I < Len)
  //  Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
  TPC.HandleValueProfile((PC & 4095) | (Idx << 12));
}

void TracePC::AddValueForStrcmp(void *caller_pc, const char *s1, const char *s2,
                              size_t n) {
  if (!n) return;
  size_t Len = std::min(n, (size_t)32);
  const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
  const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
  size_t I = 0;
  for (; I < Len; I++)
    if (A1[I] != A2[I] || A1[I] == 0)
      break;
  size_t PC = reinterpret_cast<size_t>(caller_pc);
  size_t Idx = I;
  // if (I < Len && A1[I])
  //  Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
  TPC.HandleValueProfile((PC & 4095) | (Idx << 12));
}

template <class T>
ATTRIBUTE_TARGET_POPCNT
#ifdef __clang__  // g++ can't handle this __attribute__ here :(
__attribute__((always_inline))
#endif  // __clang__
void TracePC::HandleCmp(void *PC, T Arg1, T Arg2) {
  uintptr_t PCuint = reinterpret_cast<uintptr_t>(PC);
  uint64_t ArgXor = Arg1 ^ Arg2;
  uint64_t ArgDistance = __builtin_popcountl(ArgXor) + 1; // [1,65]
  uintptr_t Idx = ((PCuint & 4095) + 1) * ArgDistance;
  TORCInsert(ArgXor, Arg1, Arg2);
  HandleValueProfile(Idx);
}

void TracePC::ProcessTORC(Dictionary *Dict, const uint8_t *Data, size_t Size) {
  TORCToDict(TORC8, Dict, Data, Size);
  TORCToDict(TORC4, Dict, Data, Size);
}

template <class T>
void TracePC::TORCToDict(const TableOfRecentCompares<T, kTORCSize> &TORC,
                         Dictionary *Dict, const uint8_t *Data, size_t Size) {
  ScopedDoingMyOwnMemmem scoped_doing_my_own_memmem;
  for (size_t i = 0; i < TORC.kSize; i++) {
    T A[2] = {TORC.Table[i][0], TORC.Table[i][1]};
    if (!A[0] && !A[1]) continue;
    for (int j = 0; j < 2; j++)
      TORCToDict(Dict, A[j], A[!j], Data, Size);
  }
}

template <class T>
void TracePC::TORCToDict(Dictionary *Dict, T FindInData, T Substitute,
                         const uint8_t *Data, size_t Size) {
  if (FindInData == Substitute) return;
  if (sizeof(T) == 4) {
    uint16_t HigherBytes = Substitute >> sizeof(T) * 4;
    if (HigherBytes == 0 || HigherBytes == 0xffff)
      TORCToDict(Dict, static_cast<uint16_t>(FindInData),
                 static_cast<uint16_t>(Substitute), Data, Size);
  }
  const size_t DataSize = sizeof(T);
  const uint8_t *End = Data + Size;
  int Attempts = 3;
  // TODO: also swap bytes in FindInData.
  for (const uint8_t *Cur = Data; Cur < End && Attempts--; Cur++) {
    Cur = (uint8_t *)memmem(Cur, End - Cur, &FindInData, DataSize);
    if (!Cur)
      break;
    size_t Pos = Cur - Data;
    for (int Offset = 0; Offset <= 0; Offset++) {
      T Tmp = Substitute + Offset;
      Word W(reinterpret_cast<uint8_t *>(&Tmp), sizeof(Tmp));
      DictionaryEntry DE(W, Pos);
      // TODO: evict all entries from Dic if it's full.
      Dict->push_back(DE);
      // Printf("Dict[%zd] TORC%zd %llx => %llx pos %zd\n", Dict->size(),
      // sizeof(T),
      //       (uint64_t)FindInData, (uint64_t)Tmp, Pos);
    }
  }
}

} // namespace fuzzer

extern "C" {
__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
  uintptr_t PC = (uintptr_t)__builtin_return_address(0);
  fuzzer::TPC.HandleTrace(Guard, PC);
}

__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
  fuzzer::TPC.HandleInit(Start, Stop);
}

__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
  uintptr_t PC = (uintptr_t)__builtin_return_address(0);
  fuzzer::TPC.HandleCallerCallee(PC, Callee);
}

__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2);
}

__attribute__((visibility("default")))
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
  uint64_t N = Cases[0];
  uint64_t *Vals = Cases + 2;
  char *PC = (char*)__builtin_return_address(0);
  for (size_t i = 0; i < N; i++)
    if (Val != Vals[i])
      fuzzer::TPC.HandleCmp(PC + i, Val, Vals[i]);
}

__attribute__((visibility("default")))
void __sanitizer_cov_trace_div4(uint32_t Val) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint32_t)0);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_div8(uint64_t Val) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint64_t)0);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
  fuzzer::TPC.HandleCmp(__builtin_return_address(0), Idx, (uintptr_t)0);
}

}  // extern "C"
OpenPOWER on IntegriCloud