1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
|
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants for functions using a personality function from a runtime
// provided by MSVC. Functions with other personality functions are left alone
// and may be prepared by other passes. In particular, all supported MSVC
// personality functions require cleanup code to be outlined, and the C++
// personality requires catch handler code to be outlined.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
#define DEBUG_TYPE "winehprepare"
static cl::opt<bool> DisableDemotion(
"disable-demotion", cl::Hidden,
cl::desc(
"Clone multicolor basic blocks but do not demote cross funclet values"),
cl::init(false));
static cl::opt<bool> DisableCleanups(
"disable-cleanups", cl::Hidden,
cl::desc("Do not remove implausible terminators or other similar cleanups"),
cl::init(false));
namespace {
class WinEHPrepare : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) {}
bool runOnFunction(Function &Fn) override;
bool doFinalization(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
const char *getPassName() const override {
return "Windows exception handling preparation";
}
private:
void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
void
insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
AllocaInst *insertPHILoads(PHINode *PN, Function &F);
void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
DenseMap<BasicBlock *, Value *> &Loads, Function &F);
bool prepareExplicitEH(Function &F,
SmallVectorImpl<BasicBlock *> &EntryBlocks);
void replaceTerminatePadWithCleanup(Function &F);
void colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks);
void resolveFuncletAncestry(Function &F,
SmallVectorImpl<BasicBlock *> &EntryBlocks);
void resolveFuncletAncestryForPath(
Function &F, SmallVectorImpl<BasicBlock *> &FuncletPath,
std::map<BasicBlock *, BasicBlock *> &IdentityMap);
void makeFuncletEdgeUnreachable(BasicBlock *Parent, BasicBlock *Child);
BasicBlock *cloneFuncletForParent(Function &F, BasicBlock *FuncletEntry,
BasicBlock *Parent);
void updateTerminatorsAfterFuncletClone(
Function &F, BasicBlock *OrigFunclet, BasicBlock *CloneFunclet,
BasicBlock *OrigBlock, BasicBlock *CloneBlock, BasicBlock *CloneParent,
ValueToValueMapTy &VMap,
std::map<BasicBlock *, BasicBlock *> &Orig2Clone);
void demotePHIsOnFunclets(Function &F);
void cloneCommonBlocks(Function &F,
SmallVectorImpl<BasicBlock *> &EntryBlocks);
void removeImplausibleTerminators(Function &F);
void cleanupPreparedFunclets(Function &F);
void verifyPreparedFunclets(Function &F);
// All fields are reset by runOnFunction.
EHPersonality Personality = EHPersonality::Unknown;
std::map<BasicBlock *, SetVector<BasicBlock *>> BlockColors;
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
std::map<BasicBlock *, std::vector<BasicBlock *>> FuncletChildren;
std::map<BasicBlock *, std::vector<BasicBlock *>> FuncletParents;
// This is a flag that indicates an uncommon situation where we need to
// clone funclets has been detected.
bool FuncletCloningRequired = false;
// When a funclet with multiple parents contains a catchret, the block to
// which it returns will be cloned so that there is a copy in each parent
// but one of the copies will not be properly linked to the catchret and
// in most cases will have no predecessors. This double map allows us
// to find these cloned blocks when we clone the child funclet.
std::map<BasicBlock *, std::map<BasicBlock *, BasicBlock*>> EstrangedBlocks;
};
} // end anonymous namespace
char WinEHPrepare::ID = 0;
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
false, false)
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
return new WinEHPrepare(TM);
}
static void findFuncletEntryPoints(Function &Fn,
SmallVectorImpl<BasicBlock *> &EntryBlocks) {
EntryBlocks.push_back(&Fn.getEntryBlock());
for (BasicBlock &BB : Fn) {
Instruction *First = BB.getFirstNonPHI();
if (!First->isEHPad())
continue;
assert(!isa<LandingPadInst>(First) &&
"landingpad cannot be used with funclet EH personality");
// Find EH pad blocks that represent funclet start points.
if (!isa<CatchEndPadInst>(First) && !isa<CleanupEndPadInst>(First))
EntryBlocks.push_back(&BB);
}
}
bool WinEHPrepare::runOnFunction(Function &Fn) {
if (!Fn.hasPersonalityFn())
return false;
// Classify the personality to see what kind of preparation we need.
Personality = classifyEHPersonality(Fn.getPersonalityFn());
// Do nothing if this is not a funclet-based personality.
if (!isFuncletEHPersonality(Personality))
return false;
// Remove unreachable blocks. It is not valuable to assign them a color and
// their existence can trick us into thinking values are alive when they are
// not.
removeUnreachableBlocks(Fn);
SmallVector<BasicBlock *, 4> EntryBlocks;
findFuncletEntryPoints(Fn, EntryBlocks);
return prepareExplicitEH(Fn, EntryBlocks);
}
bool WinEHPrepare::doFinalization(Module &M) { return false; }
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
const BasicBlock *BB) {
CxxUnwindMapEntry UME;
UME.ToState = ToState;
UME.Cleanup = BB;
FuncInfo.CxxUnwindMap.push_back(UME);
return FuncInfo.getLastStateNumber();
}
static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
int TryHigh, int CatchHigh,
ArrayRef<const CatchPadInst *> Handlers) {
WinEHTryBlockMapEntry TBME;
TBME.TryLow = TryLow;
TBME.TryHigh = TryHigh;
TBME.CatchHigh = CatchHigh;
assert(TBME.TryLow <= TBME.TryHigh);
for (const CatchPadInst *CPI : Handlers) {
WinEHHandlerType HT;
Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
if (TypeInfo->isNullValue())
HT.TypeDescriptor = nullptr;
else
HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
HT.Handler = CPI->getParent();
if (isa<ConstantPointerNull>(CPI->getArgOperand(2)))
HT.CatchObj.Alloca = nullptr;
else
HT.CatchObj.Alloca = cast<AllocaInst>(CPI->getArgOperand(2));
TBME.HandlerArray.push_back(HT);
}
FuncInfo.TryBlockMap.push_back(TBME);
}
static const CatchPadInst *getSingleCatchPadPredecessor(const BasicBlock *BB) {
for (const BasicBlock *PredBlock : predecessors(BB))
if (auto *CPI = dyn_cast<CatchPadInst>(PredBlock->getFirstNonPHI()))
return CPI;
return nullptr;
}
/// Find all the catchpads that feed directly into the catchendpad. Frontends
/// using this personality should ensure that each catchendpad and catchpad has
/// one or zero catchpad predecessors.
///
/// The following C++ generates the IR after it:
/// try {
/// } catch (A) {
/// } catch (B) {
/// }
///
/// IR:
/// %catchpad.A
/// catchpad [i8* A typeinfo]
/// to label %catch.A unwind label %catchpad.B
/// %catchpad.B
/// catchpad [i8* B typeinfo]
/// to label %catch.B unwind label %endcatches
/// %endcatches
/// catchendblock unwind to caller
static void
findCatchPadsForCatchEndPad(const BasicBlock *CatchEndBB,
SmallVectorImpl<const CatchPadInst *> &Handlers) {
const CatchPadInst *CPI = getSingleCatchPadPredecessor(CatchEndBB);
while (CPI) {
Handlers.push_back(CPI);
CPI = getSingleCatchPadPredecessor(CPI->getParent());
}
// We've pushed these back into reverse source order. Reverse them to get
// the list back into source order.
std::reverse(Handlers.begin(), Handlers.end());
}
// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
// to. If the unwind edge came from an invoke, return null.
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
if (isa<InvokeInst>(TI))
return nullptr;
if (TI->isEHPad())
return BB;
return cast<CleanupReturnInst>(TI)->getCleanupPad()->getParent();
}
static void calculateExplicitCXXStateNumbers(WinEHFuncInfo &FuncInfo,
const BasicBlock &BB,
int ParentState) {
assert(BB.isEHPad());
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
// All catchpad instructions will be handled when we process their
// respective catchendpad instruction.
if (isa<CatchPadInst>(FirstNonPHI))
return;
if (isa<CatchEndPadInst>(FirstNonPHI)) {
SmallVector<const CatchPadInst *, 2> Handlers;
findCatchPadsForCatchEndPad(&BB, Handlers);
const BasicBlock *FirstTryPad = Handlers.front()->getParent();
int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
for (const BasicBlock *PredBlock : predecessors(FirstTryPad))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, TryLow);
int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
// catchpads are separate funclets in C++ EH due to the way rethrow works.
// In SEH, they aren't, so no invokes will unwind to the catchendpad.
FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
int TryHigh = CatchLow - 1;
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CatchLow);
int CatchHigh = FuncInfo.getLastStateNumber();
addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
DEBUG(dbgs() << "TryLow[" << FirstTryPad->getName() << "]: " << TryLow
<< '\n');
DEBUG(dbgs() << "TryHigh[" << FirstTryPad->getName() << "]: " << TryHigh
<< '\n');
DEBUG(dbgs() << "CatchHigh[" << FirstTryPad->getName() << "]: " << CatchHigh
<< '\n');
} else if (isa<CleanupPadInst>(FirstNonPHI)) {
// A cleanup can have multiple exits; don't re-process after the first.
if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
return;
int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
<< BB.getName() << '\n');
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CleanupState);
} else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
// Propagate ParentState to the cleanuppad in case it doesn't have
// any cleanuprets.
BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
calculateExplicitCXXStateNumbers(FuncInfo, *CleanupBlock, ParentState);
// Anything unwinding through CleanupEndPadInst is in ParentState.
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, ParentState);
} else if (isa<TerminatePadInst>(FirstNonPHI)) {
report_fatal_error("Not yet implemented!");
} else {
llvm_unreachable("unexpected EH Pad!");
}
}
static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
const Function *Filter, const BasicBlock *Handler) {
SEHUnwindMapEntry Entry;
Entry.ToState = ParentState;
Entry.IsFinally = false;
Entry.Filter = Filter;
Entry.Handler = Handler;
FuncInfo.SEHUnwindMap.push_back(Entry);
return FuncInfo.SEHUnwindMap.size() - 1;
}
static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
const BasicBlock *Handler) {
SEHUnwindMapEntry Entry;
Entry.ToState = ParentState;
Entry.IsFinally = true;
Entry.Filter = nullptr;
Entry.Handler = Handler;
FuncInfo.SEHUnwindMap.push_back(Entry);
return FuncInfo.SEHUnwindMap.size() - 1;
}
static void calculateExplicitSEHStateNumbers(WinEHFuncInfo &FuncInfo,
const BasicBlock &BB,
int ParentState) {
assert(BB.isEHPad());
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
// All catchpad instructions will be handled when we process their
// respective catchendpad instruction.
if (isa<CatchPadInst>(FirstNonPHI))
return;
if (isa<CatchEndPadInst>(FirstNonPHI)) {
// Extract the filter function and the __except basic block and create a
// state for them.
SmallVector<const CatchPadInst *, 1> Handlers;
findCatchPadsForCatchEndPad(&BB, Handlers);
assert(Handlers.size() == 1 &&
"SEH doesn't have multiple handlers per __try");
const CatchPadInst *CPI = Handlers.front();
const BasicBlock *CatchPadBB = CPI->getParent();
const Constant *FilterOrNull =
cast<Constant>(CPI->getArgOperand(0)->stripPointerCasts());
const Function *Filter = dyn_cast<Function>(FilterOrNull);
assert((Filter || FilterOrNull->isNullValue()) &&
"unexpected filter value");
int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
// Everything in the __try block uses TryState as its parent state.
FuncInfo.EHPadStateMap[CPI] = TryState;
DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
<< CatchPadBB->getName() << '\n');
for (const BasicBlock *PredBlock : predecessors(CatchPadBB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, TryState);
// Everything in the __except block unwinds to ParentState, just like code
// outside the __try.
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
<< BB.getName() << '\n');
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
} else if (isa<CleanupPadInst>(FirstNonPHI)) {
// A cleanup can have multiple exits; don't re-process after the first.
if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
return;
int CleanupState = addSEHFinally(FuncInfo, ParentState, &BB);
FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
<< BB.getName() << '\n');
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, CleanupState);
} else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
// Propagate ParentState to the cleanuppad in case it doesn't have
// any cleanuprets.
BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
calculateExplicitSEHStateNumbers(FuncInfo, *CleanupBlock, ParentState);
// Anything unwinding through CleanupEndPadInst is in ParentState.
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
<< BB.getName() << '\n');
for (const BasicBlock *PredBlock : predecessors(&BB))
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
} else if (isa<TerminatePadInst>(FirstNonPHI)) {
report_fatal_error("Not yet implemented!");
} else {
llvm_unreachable("unexpected EH Pad!");
}
}
/// Check if the EH Pad unwinds to caller. Cleanups are a little bit of a
/// special case because we have to look at the cleanupret instruction that uses
/// the cleanuppad.
static bool doesEHPadUnwindToCaller(const Instruction *EHPad) {
auto *CPI = dyn_cast<CleanupPadInst>(EHPad);
if (!CPI)
return EHPad->mayThrow();
// This cleanup does not return or unwind, so we say it unwinds to caller.
if (CPI->use_empty())
return true;
const Instruction *User = CPI->user_back();
if (auto *CRI = dyn_cast<CleanupReturnInst>(User))
return CRI->unwindsToCaller();
return cast<CleanupEndPadInst>(User)->unwindsToCaller();
}
void llvm::calculateSEHStateNumbers(const Function *Fn,
WinEHFuncInfo &FuncInfo) {
// Don't compute state numbers twice.
if (!FuncInfo.SEHUnwindMap.empty())
return;
for (const BasicBlock &BB : *Fn) {
if (!BB.isEHPad() || !doesEHPadUnwindToCaller(BB.getFirstNonPHI()))
continue;
calculateExplicitSEHStateNumbers(FuncInfo, BB, -1);
}
}
void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
WinEHFuncInfo &FuncInfo) {
// Return if it's already been done.
if (!FuncInfo.EHPadStateMap.empty())
return;
for (const BasicBlock &BB : *Fn) {
if (!BB.isEHPad())
continue;
if (BB.isLandingPad())
report_fatal_error("MSVC C++ EH cannot use landingpads");
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
if (!doesEHPadUnwindToCaller(FirstNonPHI))
continue;
calculateExplicitCXXStateNumbers(FuncInfo, BB, -1);
}
}
static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
ClrHandlerType HandlerType, uint32_t TypeToken,
const BasicBlock *Handler) {
ClrEHUnwindMapEntry Entry;
Entry.Parent = ParentState;
Entry.Handler = Handler;
Entry.HandlerType = HandlerType;
Entry.TypeToken = TypeToken;
FuncInfo.ClrEHUnwindMap.push_back(Entry);
return FuncInfo.ClrEHUnwindMap.size() - 1;
}
void llvm::calculateClrEHStateNumbers(const Function *Fn,
WinEHFuncInfo &FuncInfo) {
// Return if it's already been done.
if (!FuncInfo.EHPadStateMap.empty())
return;
SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
// Each pad needs to be able to refer to its parent, so scan the function
// looking for top-level handlers and seed the worklist with them.
for (const BasicBlock &BB : *Fn) {
if (!BB.isEHPad())
continue;
if (BB.isLandingPad())
report_fatal_error("CoreCLR EH cannot use landingpads");
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
if (!doesEHPadUnwindToCaller(FirstNonPHI))
continue;
// queue this with sentinel parent state -1 to mean unwind to caller.
Worklist.emplace_back(FirstNonPHI, -1);
}
while (!Worklist.empty()) {
const Instruction *Pad;
int ParentState;
std::tie(Pad, ParentState) = Worklist.pop_back_val();
int PredState;
if (const CleanupEndPadInst *EndPad = dyn_cast<CleanupEndPadInst>(Pad)) {
FuncInfo.EHPadStateMap[EndPad] = ParentState;
// Queue the cleanuppad, in case it doesn't have a cleanupret.
Worklist.emplace_back(EndPad->getCleanupPad(), ParentState);
// Preds of the endpad should get the parent state.
PredState = ParentState;
} else if (const CleanupPadInst *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
// A cleanup can have multiple exits; don't re-process after the first.
if (FuncInfo.EHPadStateMap.count(Pad))
continue;
// CoreCLR personality uses arity to distinguish faults from finallies.
const BasicBlock *PadBlock = Cleanup->getParent();
ClrHandlerType HandlerType =
(Cleanup->getNumOperands() ? ClrHandlerType::Fault
: ClrHandlerType::Finally);
int NewState =
addClrEHHandler(FuncInfo, ParentState, HandlerType, 0, PadBlock);
FuncInfo.EHPadStateMap[Cleanup] = NewState;
// Propagate the new state to all preds of the cleanup
PredState = NewState;
} else if (const CatchEndPadInst *EndPad = dyn_cast<CatchEndPadInst>(Pad)) {
FuncInfo.EHPadStateMap[EndPad] = ParentState;
// Preds of the endpad should get the parent state.
PredState = ParentState;
} else if (const CatchPadInst *Catch = dyn_cast<CatchPadInst>(Pad)) {
const BasicBlock *PadBlock = Catch->getParent();
uint32_t TypeToken = static_cast<uint32_t>(
cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
int NewState = addClrEHHandler(FuncInfo, ParentState,
ClrHandlerType::Catch, TypeToken, PadBlock);
FuncInfo.EHPadStateMap[Catch] = NewState;
// Preds of the catch get its state
PredState = NewState;
} else {
llvm_unreachable("Unexpected EH pad");
}
// Queue all predecessors with the given state
for (const BasicBlock *Pred : predecessors(Pad->getParent())) {
if ((Pred = getEHPadFromPredecessor(Pred)))
Worklist.emplace_back(Pred->getFirstNonPHI(), PredState);
}
}
}
void WinEHPrepare::replaceTerminatePadWithCleanup(Function &F) {
if (Personality != EHPersonality::MSVC_CXX)
return;
for (BasicBlock &BB : F) {
Instruction *First = BB.getFirstNonPHI();
auto *TPI = dyn_cast<TerminatePadInst>(First);
if (!TPI)
continue;
if (TPI->getNumArgOperands() != 1)
report_fatal_error(
"Expected a unary terminatepad for MSVC C++ personalities!");
auto *TerminateFn = dyn_cast<Function>(TPI->getArgOperand(0));
if (!TerminateFn)
report_fatal_error("Function operand expected in terminatepad for MSVC "
"C++ personalities!");
// Insert the cleanuppad instruction.
auto *CPI = CleanupPadInst::Create(
BB.getContext(), {}, Twine("terminatepad.for.", BB.getName()), &BB);
// Insert the call to the terminate instruction.
auto *CallTerminate = CallInst::Create(TerminateFn, {}, &BB);
CallTerminate->setDoesNotThrow();
CallTerminate->setDoesNotReturn();
CallTerminate->setCallingConv(TerminateFn->getCallingConv());
// Insert a new terminator for the cleanuppad using the same successor as
// the terminatepad.
CleanupReturnInst::Create(CPI, TPI->getUnwindDest(), &BB);
// Let's remove the terminatepad now that we've inserted the new
// instructions.
TPI->eraseFromParent();
}
}
static void
colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks,
std::map<BasicBlock *, SetVector<BasicBlock *>> &BlockColors,
std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks) {
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 16> Worklist;
BasicBlock *EntryBlock = &F.getEntryBlock();
// Build up the color map, which maps each block to its set of 'colors'.
// For any block B, the "colors" of B are the set of funclets F (possibly
// including a root "funclet" representing the main function), such that
// F will need to directly contain B or a copy of B (where the term "directly
// contain" is used to distinguish from being "transitively contained" in
// a nested funclet).
// Use a CFG walk driven by a worklist of (block, color) pairs. The "color"
// sets attached during this processing to a block which is the entry of some
// funclet F is actually the set of F's parents -- i.e. the union of colors
// of all predecessors of F's entry. For all other blocks, the color sets
// are as defined above. A post-pass fixes up the block color map to reflect
// the same sense of "color" for funclet entries as for other blocks.
DEBUG_WITH_TYPE("winehprepare-coloring", dbgs() << "\nColoring funclets for "
<< F.getName() << "\n");
Worklist.push_back({EntryBlock, EntryBlock});
while (!Worklist.empty()) {
BasicBlock *Visiting;
BasicBlock *Color;
std::tie(Visiting, Color) = Worklist.pop_back_val();
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << "Visiting " << Visiting->getName() << ", "
<< Color->getName() << "\n");
Instruction *VisitingHead = Visiting->getFirstNonPHI();
if (VisitingHead->isEHPad() && !isa<CatchEndPadInst>(VisitingHead) &&
!isa<CleanupEndPadInst>(VisitingHead)) {
// Mark this as a funclet head as a member of itself.
FuncletBlocks[Visiting].insert(Visiting);
// Queue exits (i.e. successors of rets/endpads) with the parent color.
// Skip any exits that are catchendpads, since the parent color must then
// represent one of the catches chained to that catchendpad, but the
// catchendpad should get the color of the common parent of all its
// chained catches (i.e. the grandparent color of the current pad).
// We don't need to worry abou catchendpads going unvisited, since the
// catches chained to them must have unwind edges to them by which we will
// visit them.
for (User *U : VisitingHead->users()) {
if (auto *Exit = dyn_cast<TerminatorInst>(U)) {
for (BasicBlock *Succ : successors(Exit->getParent()))
if (!isa<CatchEndPadInst>(*Succ->getFirstNonPHI()))
if (BlockColors[Succ].insert(Color)) {
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigned color \'"
<< Color->getName() << "\' to block \'"
<< Succ->getName() << "\'.\n");
Worklist.push_back({Succ, Color});
}
}
}
// Handle CatchPad specially since its successors need different colors.
if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(VisitingHead)) {
// Visit the normal successor with the color of the new EH pad, and
// visit the unwind successor with the color of the parent.
BasicBlock *NormalSucc = CatchPad->getNormalDest();
if (BlockColors[NormalSucc].insert(Visiting)) {
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigned color \'" << Visiting->getName()
<< "\' to block \'" << NormalSucc->getName()
<< "\'.\n");
Worklist.push_back({NormalSucc, Visiting});
}
BasicBlock *UnwindSucc = CatchPad->getUnwindDest();
if (BlockColors[UnwindSucc].insert(Color)) {
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigned color \'" << Color->getName()
<< "\' to block \'" << UnwindSucc->getName()
<< "\'.\n");
Worklist.push_back({UnwindSucc, Color});
}
continue;
}
// Switch color to the current node, except for terminate pads which
// have no bodies and only unwind successors and so need their successors
// visited with the color of the parent.
if (!isa<TerminatePadInst>(VisitingHead))
Color = Visiting;
} else {
// Note that this is a member of the given color.
FuncletBlocks[Color].insert(Visiting);
}
TerminatorInst *Terminator = Visiting->getTerminator();
if (isa<CleanupReturnInst>(Terminator) ||
isa<CatchReturnInst>(Terminator) ||
isa<CleanupEndPadInst>(Terminator)) {
// These blocks' successors have already been queued with the parent
// color.
continue;
}
for (BasicBlock *Succ : successors(Visiting)) {
if (isa<CatchEndPadInst>(Succ->getFirstNonPHI())) {
// The catchendpad needs to be visited with the parent's color, not
// the current color. This will happen in the code above that visits
// any catchpad unwind successor with the parent color, so we can
// safely skip this successor here.
continue;
}
if (BlockColors[Succ].insert(Color)) {
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigned color \'" << Color->getName()
<< "\' to block \'" << Succ->getName()
<< "\'.\n");
Worklist.push_back({Succ, Color});
}
}
}
}
static BasicBlock *getEndPadForCatch(CatchPadInst *Catch) {
// The catch may have sibling catches. Follow the unwind chain until we get
// to the catchendpad.
BasicBlock *NextUnwindDest = Catch->getUnwindDest();
auto *UnwindTerminator = NextUnwindDest->getTerminator();
while (auto *NextCatch = dyn_cast<CatchPadInst>(UnwindTerminator)) {
NextUnwindDest = NextCatch->getUnwindDest();
UnwindTerminator = NextUnwindDest->getTerminator();
}
// The last catch in the chain must unwind to a catchendpad.
assert(isa<CatchEndPadInst>(UnwindTerminator));
return NextUnwindDest;
}
static void updateClonedEHPadUnwindToParent(
BasicBlock *UnwindDest, BasicBlock *OrigBlock, BasicBlock *CloneBlock,
std::vector<BasicBlock *> &OrigParents, BasicBlock *CloneParent) {
auto updateUnwindTerminator = [](BasicBlock *BB) {
auto *Terminator = BB->getTerminator();
if (isa<CatchEndPadInst>(Terminator) ||
isa<CleanupEndPadInst>(Terminator)) {
removeUnwindEdge(BB);
} else {
// If the block we're updating has a cleanupendpad or cleanupret
// terminator, we just want to replace that terminator with an
// unreachable instruction.
assert(isa<CleanupEndPadInst>(Terminator) ||
isa<CleanupReturnInst>(Terminator));
// Loop over all of the successors, removing the block's entry from any
// PHI nodes.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
// Remove the terminator and replace it with an unreachable instruction.
BB->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), BB);
}
};
assert(UnwindDest->isEHPad());
// There are many places to which this EH terminator can unwind and each has
// slightly different rules for whether or not it fits with the given
// location.
auto *EHPadInst = UnwindDest->getFirstNonPHI();
if (isa<CatchEndPadInst>(EHPadInst)) {
auto *CloneParentCatch =
dyn_cast<CatchPadInst>(CloneParent->getFirstNonPHI());
if (!CloneParentCatch ||
getEndPadForCatch(CloneParentCatch) != UnwindDest) {
DEBUG_WITH_TYPE(
"winehprepare-coloring",
dbgs() << " removing unwind destination of clone block \'"
<< CloneBlock->getName() << "\'.\n");
updateUnwindTerminator(CloneBlock);
}
// It's possible that the catch end pad is a legal match for both the clone
// and the original, so they must be checked separately. If the original
// funclet will still have multiple parents after the current clone parent
// is removed, we'll leave its unwind terminator until later.
assert(OrigParents.size() >= 2);
if (OrigParents.size() != 2)
return;
// If the original funclet will have a single parent after the clone parent
// is removed, check that parent's unwind destination.
assert(OrigParents.front() == CloneParent ||
OrigParents.back() == CloneParent);
BasicBlock *OrigParent;
if (OrigParents.front() == CloneParent)
OrigParent = OrigParents.back();
else
OrigParent = OrigParents.front();
auto *OrigParentCatch =
dyn_cast<CatchPadInst>(OrigParent->getFirstNonPHI());
if (!OrigParentCatch || getEndPadForCatch(OrigParentCatch) != UnwindDest) {
DEBUG_WITH_TYPE(
"winehprepare-coloring",
dbgs() << " removing unwind destination of original block \'"
<< OrigBlock << "\'.\n");
updateUnwindTerminator(OrigBlock);
}
} else if (auto *CleanupEnd = dyn_cast<CleanupEndPadInst>(EHPadInst)) {
// If the EH terminator unwinds to a cleanupendpad, that cleanupendpad
// must be ending a cleanuppad of either our clone parent or one
// one of the parents of the original funclet.
auto *CloneParentCP =
dyn_cast<CleanupPadInst>(CloneParent->getFirstNonPHI());
auto *EndedCP = CleanupEnd->getCleanupPad();
if (EndedCP == CloneParentCP) {
// If it is ending the cleanuppad of our cloned parent, then we
// want to remove the unwind destination of the EH terminator that
// we associated with the original funclet.
assert(isa<CatchEndPadInst>(OrigBlock->getFirstNonPHI()));
DEBUG_WITH_TYPE(
"winehprepare-coloring",
dbgs() << " removing unwind destination of original block \'"
<< OrigBlock->getName() << "\'.\n");
updateUnwindTerminator(OrigBlock);
} else {
// If it isn't ending the cleanuppad of our clone parent, then we
// want to remove the unwind destination of the EH terminator that
// associated with our cloned funclet.
assert(isa<CatchEndPadInst>(CloneBlock->getFirstNonPHI()));
DEBUG_WITH_TYPE(
"winehprepare-coloring",
dbgs() << " removing unwind destination of clone block \'"
<< CloneBlock->getName() << "\'.\n");
updateUnwindTerminator(CloneBlock);
}
} else {
// If the EH terminator unwinds to a catchpad, cleanuppad or
// terminatepad that EH pad must be a sibling of the funclet we're
// cloning. We'll clone it later and update one of the catchendpad
// instrunctions that unwinds to it at that time.
assert(isa<CatchPadInst>(EHPadInst) || isa<CleanupPadInst>(EHPadInst) ||
isa<TerminatePadInst>(EHPadInst));
}
}
// If the terminator is a catchpad, we must also clone the catchendpad to which
// it unwinds and add this to the clone parent's block list. The catchendpad
// unwinds to either its caller, a sibling EH pad, a cleanup end pad in its
// parent funclet or a catch end pad in its grandparent funclet (which must be
// coupled with the parent funclet). If it has no unwind destination
// (i.e. unwind to caller), there is nothing to be done. If the unwind
// destination is a sibling EH pad, we will update the terminators later (in
// resolveFuncletAncestryForPath). If it unwinds to a cleanup end pad or a
// catch end pad and this end pad corresponds to the clone parent, we will
// remove the unwind destination in the original catchendpad. If it unwinds to
// a cleanup end pad or a catch end pad that does not correspond to the clone
// parent, we will remove the unwind destination in the cloned catchendpad.
static void updateCatchTerminators(
Function &F, CatchPadInst *OrigCatch, CatchPadInst *CloneCatch,
std::vector<BasicBlock *> &OrigParents, BasicBlock *CloneParent,
ValueToValueMapTy &VMap,
std::map<BasicBlock *, SetVector<BasicBlock *>> &BlockColors,
std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks) {
// If we're cloning a catch pad that unwinds to a catchendpad, we also
// need to clone the catchendpad. The coloring algorithm associates
// the catchendpad block with the funclet's parent, so we have some work
// to do here to figure out whether the original belongs to the clone
// parent or one of the original funclets other parents (it might have
// more than one at this point). In either case, we might also need to
// remove the unwind edge if the catchendpad doesn't unwind to a block
// in the right grandparent funclet.
Instruction *I = CloneCatch->getUnwindDest()->getFirstNonPHI();
if (auto *CEP = dyn_cast<CatchEndPadInst>(I)) {
assert(BlockColors[CEP->getParent()].size() == 1);
BasicBlock *CEPFunclet = *(BlockColors[CEP->getParent()].begin());
BasicBlock *CEPCloneParent = nullptr;
CatchPadInst *PredCatch = nullptr;
if (CEPFunclet == CloneParent) {
// The catchendpad is in the clone parent, so we need to clone it
// and associate the clone with the original funclet's parent. If
// the original funclet had multiple parents, we'll add it to the
// first parent that isn't the clone parent. The logic in
// updateClonedEHPadUnwindToParent() will only remove the unwind edge
// if there is only one parent other than the clone parent, so we don't
// need to verify the ancestry. The catchendpad will eventually be
// cloned into the correct parent and all invalid unwind edges will be
// removed.
for (auto *Parent : OrigParents) {
if (Parent != CloneParent) {
CEPCloneParent = Parent;
break;
}
}
PredCatch = OrigCatch;
} else {
CEPCloneParent = CloneParent;
PredCatch = CloneCatch;
}
assert(CEPCloneParent && PredCatch);
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Cloning catchendpad \'"
<< CEP->getParent()->getName() << "\' for funclet \'"
<< CEPCloneParent->getName() << "\'.\n");
BasicBlock *ClonedCEP = CloneBasicBlock(
CEP->getParent(), VMap, Twine(".from.", CEPCloneParent->getName()));
// Insert the clone immediately after the original to ensure determinism
// and to keep the same relative ordering of any funclet's blocks.
ClonedCEP->insertInto(&F, CEP->getParent()->getNextNode());
PredCatch->setUnwindDest(ClonedCEP);
FuncletBlocks[CEPCloneParent].insert(ClonedCEP);
BlockColors[ClonedCEP].insert(CEPCloneParent);
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigning color \'"
<< CEPCloneParent->getName() << "\' to block \'"
<< ClonedCEP->getName() << "\'.\n");
auto *ClonedCEPInst = cast<CatchEndPadInst>(ClonedCEP->getTerminator());
if (auto *Dest = ClonedCEPInst->getUnwindDest())
updateClonedEHPadUnwindToParent(Dest, OrigCatch->getUnwindDest(),
CloneCatch->getUnwindDest(), OrigParents,
CloneParent);
}
}
// While we are cloning a funclet because it has multiple parents, we will call
// this routine to update the terminators for the original and cloned copies
// of each basic block. All blocks in the funclet have been clone by this time.
// OrigBlock and CloneBlock will be identical except for their block label.
//
// If the terminator is a catchpad, we must also clone the catchendpad to which
// it unwinds and in most cases update either the original catchendpad or the
// clone. See the updateCatchTerminators() helper routine for details.
//
// If the terminator is a catchret its successor is a block in its parent
// funclet. If the instruction returns to a block in the parent for which the
// cloned funclet was created, the terminator in the original block must be
// replaced by an unreachable instruction. Otherwise the terminator in the
// clone block must be replaced by an unreachable instruction.
//
// If the terminator is a cleanupret or cleanupendpad it either unwinds to
// caller or unwinds to a sibling EH pad, a cleanup end pad in its parent
// funclet or a catch end pad in its grandparent funclet (which must be
// coupled with the parent funclet). If it unwinds to caller there is
// nothing to be done. If the unwind destination is a sibling EH pad, we will
// update the terminators later (in resolveFuncletAncestryForPath). If it
// unwinds to a cleanup end pad or a catch end pad and this end pad corresponds
// to the clone parent, we will replace the terminator in the original block
// with an unreachable instruction. If it unwinds to a cleanup end pad or a
// catch end pad that does not correspond to the clone parent, we will replace
// the terminator in the clone block with an unreachable instruction.
//
// If the terminator is an invoke instruction, we will handle it after all
// siblings of the current funclet have been cloned.
void WinEHPrepare::updateTerminatorsAfterFuncletClone(
Function &F, BasicBlock *OrigFunclet, BasicBlock *CloneFunclet,
BasicBlock *OrigBlock, BasicBlock *CloneBlock, BasicBlock *CloneParent,
ValueToValueMapTy &VMap, std::map<BasicBlock *, BasicBlock *> &Orig2Clone) {
// If the cloned block doesn't have an exceptional terminator, there is
// nothing to be done here.
TerminatorInst *CloneTerminator = CloneBlock->getTerminator();
if (!CloneTerminator->isExceptional())
return;
if (auto *CloneCatch = dyn_cast<CatchPadInst>(CloneTerminator)) {
// A cloned catch pad has a lot of wrinkles, so we'll call a helper function
// to update this case.
auto *OrigCatch = cast<CatchPadInst>(OrigBlock->getTerminator());
updateCatchTerminators(F, OrigCatch, CloneCatch,
FuncletParents[OrigFunclet], CloneParent, VMap,
BlockColors, FuncletBlocks);
} else if (auto *CRI = dyn_cast<CatchReturnInst>(CloneTerminator)) {
if (FuncletBlocks[CloneParent].count(CRI->getSuccessor())) {
BasicBlock *OrigParent;
// The original funclet may have more than two parents, but that's OK.
// We just need to remap the original catchret to any of the parents.
// All of the parents should have an entry in the EstrangedBlocks map
// if any of them do.
if (FuncletParents[OrigFunclet].front() == CloneParent)
OrigParent = FuncletParents[OrigFunclet].back();
else
OrigParent = FuncletParents[OrigFunclet].front();
for (succ_iterator SI = succ_begin(OrigBlock), SE = succ_end(OrigBlock);
SI != SE; ++SI)
(*SI)->removePredecessor(OrigBlock);
BasicBlock *LostBlock = EstrangedBlocks[OrigParent][CRI->getSuccessor()];
auto *OrigCatchRet = cast<CatchReturnInst>(OrigBlock->getTerminator());
if (LostBlock) {
OrigCatchRet->setSuccessor(LostBlock);
} else {
OrigCatchRet->eraseFromParent();
new UnreachableInst(OrigBlock->getContext(), OrigBlock);
}
} else {
for (succ_iterator SI = succ_begin(CloneBlock), SE = succ_end(CloneBlock);
SI != SE; ++SI)
(*SI)->removePredecessor(CloneBlock);
BasicBlock *LostBlock = EstrangedBlocks[CloneParent][CRI->getSuccessor()];
if (LostBlock) {
CRI->setSuccessor(LostBlock);
} else {
CRI->eraseFromParent();
new UnreachableInst(CloneBlock->getContext(), CloneBlock);
}
}
} else if (isa<CleanupReturnInst>(CloneTerminator) ||
isa<CleanupEndPadInst>(CloneTerminator)) {
BasicBlock *UnwindDest = nullptr;
// A cleanup pad can unwind through either a cleanupret or a cleanupendpad
// but both are handled the same way.
if (auto *CRI = dyn_cast<CleanupReturnInst>(CloneTerminator))
UnwindDest = CRI->getUnwindDest();
else if (auto *CEI = dyn_cast<CleanupEndPadInst>(CloneTerminator))
UnwindDest = CEI->getUnwindDest();
// If the instruction has no local unwind destination, there is nothing
// to be done.
if (!UnwindDest)
return;
// The unwind destination may be a sibling EH pad, a catchendpad in
// a grandparent funclet (ending a catchpad in the parent) or a cleanup
// cleanupendpad in the parent. Call a helper routine to diagnose this
// and remove either the clone or original terminator as needed.
updateClonedEHPadUnwindToParent(UnwindDest, OrigBlock, CloneBlock,
FuncletParents[OrigFunclet], CloneParent);
}
}
// Clones all blocks used by the specified funclet to avoid the funclet having
// multiple parent funclets. All terminators in the parent that unwind to the
// original funclet are remapped to unwind to the clone. Any terminator in the
// original funclet which returned to this parent is converted to an unreachable
// instruction. Likewise, any terminator in the cloned funclet which returns to
// a parent funclet other than the specified parent is converted to an
// unreachable instruction.
BasicBlock *WinEHPrepare::cloneFuncletForParent(Function &F,
BasicBlock *FuncletEntry,
BasicBlock *Parent) {
std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletEntry];
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << "Cloning funclet \'" << FuncletEntry->getName()
<< "\' for parent \'" << Parent->getName() << "\'.\n");
std::map<BasicBlock *, BasicBlock *> Orig2Clone;
ValueToValueMapTy VMap;
for (BasicBlock *BB : BlocksInFunclet) {
// Create a new basic block and copy instructions into it.
BasicBlock *CBB =
CloneBasicBlock(BB, VMap, Twine(".from.", Parent->getName()));
// Insert the clone immediately after the original to ensure determinism
// and to keep the same relative ordering of any funclet's blocks.
CBB->insertInto(&F, BB->getNextNode());
// Add basic block mapping.
VMap[BB] = CBB;
// Record delta operations that we need to perform to our color mappings.
Orig2Clone[BB] = CBB;
} // end for (BasicBlock *BB : BlocksInFunclet)
BasicBlock *ClonedFunclet = Orig2Clone[FuncletEntry];
assert(ClonedFunclet);
// Set the coloring for the blocks we just cloned.
std::set<BasicBlock *> &ClonedBlocks = FuncletBlocks[ClonedFunclet];
for (auto &BBMapping : Orig2Clone) {
BasicBlock *NewBlock = BBMapping.second;
ClonedBlocks.insert(NewBlock);
BlockColors[NewBlock].insert(ClonedFunclet);
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigning color \'" << ClonedFunclet->getName()
<< "\' to block \'" << NewBlock->getName()
<< "\'.\n");
// Use the VMap to remap the instructions in this cloned block.
for (Instruction &I : *NewBlock)
RemapInstruction(&I, VMap, RF_IgnoreMissingEntries);
}
// All the cloned blocks have to be colored in the loop above before we can
// update the terminators because doing so can require checking the color of
// other blocks in the cloned funclet.
for (auto &BBMapping : Orig2Clone) {
BasicBlock *OldBlock = BBMapping.first;
BasicBlock *NewBlock = BBMapping.second;
// Update the terminator, if necessary, in both the original block and the
// cloned so that the original funclet never returns to a block in the
// clone parent and the clone funclet never returns to a block in any other
// of the original funclet's parents.
updateTerminatorsAfterFuncletClone(F, FuncletEntry, ClonedFunclet, OldBlock,
NewBlock, Parent, VMap, Orig2Clone);
// Check to see if the cloned block successor has PHI nodes. If so, we need
// to add entries to the PHI nodes for the cloned block now.
for (BasicBlock *SuccBB : successors(NewBlock)) {
for (Instruction &SuccI : *SuccBB) {
auto *SuccPN = dyn_cast<PHINode>(&SuccI);
if (!SuccPN)
break;
// Ok, we have a PHI node. Figure out what the incoming value was for
// the OldBlock.
int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
if (OldBlockIdx == -1)
break;
Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
// Remap the value if necessary.
if (auto *Inst = dyn_cast<Instruction>(IV)) {
ValueToValueMapTy::iterator I = VMap.find(Inst);
if (I != VMap.end())
IV = I->second;
}
SuccPN->addIncoming(IV, NewBlock);
}
}
}
// Erase the clone's parent from the original funclet's parent list.
std::vector<BasicBlock *> &Parents = FuncletParents[FuncletEntry];
Parents.erase(std::remove(Parents.begin(), Parents.end(), Parent),
Parents.end());
// Store the cloned funclet's parent.
assert(std::find(FuncletParents[ClonedFunclet].begin(),
FuncletParents[ClonedFunclet].end(),
Parent) == std::end(FuncletParents[ClonedFunclet]));
FuncletParents[ClonedFunclet].push_back(Parent);
// Copy any children of the original funclet to the clone. We'll either
// clone them too or make that path unreachable when we take the next step
// in resolveFuncletAncestryForPath().
for (auto *Child : FuncletChildren[FuncletEntry]) {
assert(std::find(FuncletChildren[ClonedFunclet].begin(),
FuncletChildren[ClonedFunclet].end(),
Child) == std::end(FuncletChildren[ClonedFunclet]));
FuncletChildren[ClonedFunclet].push_back(Child);
assert(std::find(FuncletParents[Child].begin(), FuncletParents[Child].end(),
ClonedFunclet) == std::end(FuncletParents[Child]));
FuncletParents[Child].push_back(ClonedFunclet);
}
// Find any blocks that unwound to the original funclet entry from the
// clone parent block and remap them to the clone.
for (auto *U : FuncletEntry->users()) {
auto *UT = dyn_cast<TerminatorInst>(U);
if (!UT)
continue;
BasicBlock *UBB = UT->getParent();
assert(BlockColors[UBB].size() == 1);
BasicBlock *UFunclet = *(BlockColors[UBB].begin());
// Funclets shouldn't be able to loop back on themselves.
assert(UFunclet != FuncletEntry);
// If this instruction unwinds to the original funclet from the clone
// parent, remap the terminator so that it unwinds to the clone instead.
// We will perform a similar transformation for siblings after all
// the siblings have been cloned.
if (UFunclet == Parent) {
// We're about to break the path from this block to the uncloned funclet
// entry, so remove it as a predeccessor to clean up the PHIs.
FuncletEntry->removePredecessor(UBB);
TerminatorInst *Terminator = UBB->getTerminator();
RemapInstruction(Terminator, VMap, RF_IgnoreMissingEntries);
}
}
// This asserts a condition that is relied upon inside the loop below,
// namely that no predecessors of the original funclet entry block
// are also predecessors of the cloned funclet entry block.
assert(std::all_of(pred_begin(FuncletEntry), pred_end(FuncletEntry),
[&ClonedFunclet](BasicBlock *Pred) {
return std::find(pred_begin(ClonedFunclet),
pred_end(ClonedFunclet),
Pred) == pred_end(ClonedFunclet);
}));
// Remove any invalid PHI node entries in the cloned funclet.cl
std::vector<PHINode *> PHIsToErase;
for (Instruction &I : *ClonedFunclet) {
auto *PN = dyn_cast<PHINode>(&I);
if (!PN)
break;
// Predecessors of the original funclet do not reach the cloned funclet,
// but the cloning process assumes they will. Remove them now.
for (auto *Pred : predecessors(FuncletEntry))
PN->removeIncomingValue(Pred, false);
}
for (auto *PN : PHIsToErase)
PN->eraseFromParent();
// Replace the original funclet in the parent's children vector with the
// cloned funclet.
for (auto &It : FuncletChildren[Parent]) {
if (It == FuncletEntry) {
It = ClonedFunclet;
break;
}
}
return ClonedFunclet;
}
// Removes the unwind edge for any exceptional terminators within the specified
// parent funclet that previously unwound to the specified child funclet.
void WinEHPrepare::makeFuncletEdgeUnreachable(BasicBlock *Parent,
BasicBlock *Child) {
for (BasicBlock *BB : FuncletBlocks[Parent]) {
TerminatorInst *Terminator = BB->getTerminator();
if (!Terminator->isExceptional())
continue;
// Look for terninators that unwind to the child funclet.
BasicBlock *UnwindDest = nullptr;
if (auto *I = dyn_cast<InvokeInst>(Terminator))
UnwindDest = I->getUnwindDest();
else if (auto *I = dyn_cast<CatchEndPadInst>(Terminator))
UnwindDest = I->getUnwindDest();
else if (auto *I = dyn_cast<TerminatePadInst>(Terminator))
UnwindDest = I->getUnwindDest();
// cleanupendpad, catchret and cleanupret don't represent a parent-to-child
// funclet transition, so we don't need to consider them here.
// If the child funclet is the unwind destination, replace the terminator
// with an unreachable instruction.
if (UnwindDest == Child)
removeUnwindEdge(BB);
}
// The specified parent is no longer a parent of the specified child.
std::vector<BasicBlock *> &Children = FuncletChildren[Parent];
Children.erase(std::remove(Children.begin(), Children.end(), Child),
Children.end());
}
// This routine is called after funclets with multiple parents are cloned for
// a specific parent. Here we look for children of the specified funclet that
// unwind to other children of that funclet and update the unwind destinations
// to ensure that each sibling is connected to the correct clone of the sibling
// to which it unwinds.
//
// If the terminator is an invoke instruction, it unwinds either to a child
// EH pad, a cleanup end pad in the current funclet, or a catch end pad in a
// parent funclet (which ends either the current catch pad or a sibling
// catch pad). If it unwinds to a child EH pad, the child will have multiple
// parents after this funclet is cloned and this case will be handled later in
// the resolveFuncletAncestryForPath processing. If it unwinds to a
// cleanup end pad in the current funclet, the instruction remapping during
// the cloning process should have already mapped the unwind destination to
// the cloned copy of the cleanup end pad. If it unwinds to a catch end pad
// there are two possibilities: either the catch end pad is the unwind
// destination for the catch pad we are currently cloning or it is the unwind
// destination for a sibling catch pad. If it it the unwind destination of the
// catch pad we are cloning, we need to update the cloned invoke instruction
// to unwind to the cloned catch end pad. Otherwise, we will handle this
// later (in resolveFuncletAncestryForPath).
static void updateSiblingToSiblingUnwind(
BasicBlock *CurFunclet,
std::map<BasicBlock *, SetVector<BasicBlock *>> &BlockColors,
std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks,
std::map<BasicBlock *, std::vector<BasicBlock *>> &FuncletParents,
std::map<BasicBlock *, std::vector<BasicBlock *>> &FuncletChildren,
std::map<BasicBlock *, BasicBlock *> &Funclet2Orig) {
// Remap any bad sibling-to-sibling transitions for funclets that
// we just cloned.
for (BasicBlock *ChildFunclet : FuncletChildren[CurFunclet]) {
for (auto *BB : FuncletBlocks[ChildFunclet]) {
TerminatorInst *Terminator = BB->getTerminator();
if (!Terminator->isExceptional())
continue;
// See if this terminator has an unwind destination.
// Note that catchendpads are handled when the associated catchpad
// is cloned. They don't fit the pattern we're looking for here.
BasicBlock *UnwindDest = nullptr;
if (auto *I = dyn_cast<CatchPadInst>(Terminator)) {
UnwindDest = I->getUnwindDest();
// The catchendpad is not a sibling destination. This case should
// have been handled in cloneFuncletForParent().
if (isa<CatchEndPadInst>(Terminator)) {
assert(BlockColors[UnwindDest].size() == 1 &&
"Cloned catchpad unwinds to an pad with multiple parents.");
assert(FuncletParents[UnwindDest].front() == CurFunclet &&
"Cloned catchpad unwinds to the wrong parent.");
continue;
}
} else {
if (auto *I = dyn_cast<CleanupReturnInst>(Terminator))
UnwindDest = I->getUnwindDest();
else if (auto *I = dyn_cast<CleanupEndPadInst>(Terminator))
UnwindDest = I->getUnwindDest();
// If the cleanup unwinds to caller, there is nothing to be done.
if (!UnwindDest)
continue;
}
// If the destination is not a cleanup pad, catch pad or terminate pad
// we don't need to handle it here.
Instruction *EHPad = UnwindDest->getFirstNonPHI();
if (!isa<CleanupPadInst>(EHPad) && !isa<CatchPadInst>(EHPad) &&
!isa<TerminatePadInst>(EHPad))
continue;
// If it is one of these, then it is either a sibling of the current
// child funclet or a clone of one of those siblings.
// If it is a sibling, no action is needed.
if (FuncletParents[UnwindDest].size() == 1 &&
FuncletParents[UnwindDest].front() == CurFunclet)
continue;
// If the unwind destination is a clone of a sibling, we need to figure
// out which sibling it is a clone of and use that sibling as the
// unwind destination.
BasicBlock *DestOrig = Funclet2Orig[UnwindDest];
BasicBlock *TargetSibling = nullptr;
for (auto &Mapping : Funclet2Orig) {
if (Mapping.second != DestOrig)
continue;
BasicBlock *MappedFunclet = Mapping.first;
if (FuncletParents[MappedFunclet].size() == 1 &&
FuncletParents[MappedFunclet].front() == CurFunclet) {
TargetSibling = MappedFunclet;
}
}
// If we didn't find the sibling we were looking for then the
// unwind destination is not a clone of one of child's siblings.
// That's unexpected.
assert(TargetSibling && "Funclet unwinds to unexpected destination.");
// Update the terminator instruction to unwind to the correct sibling.
if (auto *I = dyn_cast<CatchPadInst>(Terminator))
I->setUnwindDest(TargetSibling);
else if (auto *I = dyn_cast<CleanupReturnInst>(Terminator))
I->setUnwindDest(TargetSibling);
else if (auto *I = dyn_cast<CleanupEndPadInst>(Terminator))
I->setUnwindDest(TargetSibling);
}
}
// Invoke remapping can't be done correctly until after all of their
// other sibling-to-sibling unwinds have been remapped.
for (BasicBlock *ChildFunclet : FuncletChildren[CurFunclet]) {
bool NeedOrigInvokeRemapping = false;
for (auto *BB : FuncletBlocks[ChildFunclet]) {
TerminatorInst *Terminator = BB->getTerminator();
auto *II = dyn_cast<InvokeInst>(Terminator);
if (!II)
continue;
BasicBlock *UnwindDest = II->getUnwindDest();
assert(UnwindDest && "Invoke unwinds to a null destination.");
assert(UnwindDest->isEHPad() && "Invoke does not unwind to an EH pad.");
auto *EHPadInst = UnwindDest->getFirstNonPHI();
if (isa<CleanupEndPadInst>(EHPadInst)) {
// An invoke that unwinds to a cleanup end pad must be in a cleanup pad.
assert(isa<CleanupPadInst>(ChildFunclet->getFirstNonPHI()) &&
"Unwinding to cleanup end pad from a non cleanup pad funclet.");
// The funclet cloning should have remapped the destination to the cloned
// cleanup end pad.
assert(FuncletBlocks[ChildFunclet].count(UnwindDest) &&
"Unwind destination for invoke was not updated during cloning.");
} else if (isa<CatchEndPadInst>(EHPadInst)) {
// If the invoke unwind destination is the unwind destination for
// the current child catch pad funclet, there is nothing to be done.
BasicBlock *OrigFunclet = Funclet2Orig[ChildFunclet];
auto *CurCatch = cast<CatchPadInst>(ChildFunclet->getFirstNonPHI());
auto *OrigCatch = cast<CatchPadInst>(OrigFunclet->getFirstNonPHI());
if (OrigCatch->getUnwindDest() == UnwindDest) {
// If the invoke unwinds to a catch end pad that is the unwind
// destination for the original catch pad, the cloned invoke should
// unwind to the cloned catch end pad.
II->setUnwindDest(CurCatch->getUnwindDest());
} else if (CurCatch->getUnwindDest() == UnwindDest) {
// If the invoke unwinds to a catch end pad that is the unwind
// destination for the clone catch pad, the original invoke should
// unwind to the unwind destination of the original catch pad.
// This happens when the catch end pad is matched to the clone
// parent when the catchpad instruction is cloned and the original
// invoke instruction unwinds to the original catch end pad (which
// is now the unwind destination of the cloned catch pad).
NeedOrigInvokeRemapping = true;
} else {
// Otherwise, the invoke unwinds to a catch end pad that is the unwind
// destination another catch pad in the unwind chain from either the
// current catch pad or one of its clones. If it is already the
// catch end pad at the end unwind chain from the current catch pad,
// we'll need to check the invoke instructions in the original funclet
// later. Otherwise, we need to remap this invoke now.
assert((getEndPadForCatch(OrigCatch) == UnwindDest ||
getEndPadForCatch(CurCatch) == UnwindDest) &&
"Invoke within catch pad unwinds to an invalid catch end pad.");
BasicBlock *CurCatchEnd = getEndPadForCatch(CurCatch);
if (CurCatchEnd == UnwindDest)
NeedOrigInvokeRemapping = true;
else
II->setUnwindDest(CurCatchEnd);
}
}
}
if (NeedOrigInvokeRemapping) {
// To properly remap invoke instructions that unwind to catch end pads
// that are not the unwind destination of the catch pad funclet in which
// the invoke appears, we must also look at the uncloned invoke in the
// original funclet. If we saw an invoke that was already properly
// unwinding to a sibling's catch end pad, we need to check the invokes
// in the original funclet.
BasicBlock *OrigFunclet = Funclet2Orig[ChildFunclet];
for (auto *BB : FuncletBlocks[OrigFunclet]) {
auto *II = dyn_cast<InvokeInst>(BB->getTerminator());
if (!II)
continue;
BasicBlock *UnwindDest = II->getUnwindDest();
assert(UnwindDest && "Invoke unwinds to a null destination.");
assert(UnwindDest->isEHPad() && "Invoke does not unwind to an EH pad.");
auto *CEP = dyn_cast<CatchEndPadInst>(UnwindDest->getFirstNonPHI());
if (!CEP)
continue;
// If the invoke unwind destination is the unwind destination for
// the original catch pad funclet, there is nothing to be done.
auto *OrigCatch = cast<CatchPadInst>(OrigFunclet->getFirstNonPHI());
// If the invoke unwinds to a catch end pad that is neither the unwind
// destination of OrigCatch or the destination another catch pad in the
// unwind chain from current catch pad, we need to remap the invoke.
BasicBlock *OrigCatchEnd = getEndPadForCatch(OrigCatch);
if (OrigCatchEnd != UnwindDest)
II->setUnwindDest(OrigCatchEnd);
}
}
}
}
void WinEHPrepare::resolveFuncletAncestry(
Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
// Most of the time this will be unnecessary. If the conditions arise that
// require this work, this flag will be set.
if (!FuncletCloningRequired)
return;
// Funclet2Orig is used to map any cloned funclets back to the original
// funclet from which they were cloned. The map is seeded with the
// original funclets mapping to themselves.
std::map<BasicBlock *, BasicBlock *> Funclet2Orig;
for (auto *Funclet : EntryBlocks)
Funclet2Orig[Funclet] = Funclet;
// Start with the entry funclet and walk the funclet parent-child tree.
SmallVector<BasicBlock *, 4> FuncletPath;
FuncletPath.push_back(&(F.getEntryBlock()));
resolveFuncletAncestryForPath(F, FuncletPath, Funclet2Orig);
}
// Walks the funclet control flow, cloning any funclets that have more than one
// parent funclet and breaking any cyclic unwind chains so that the path becomes
// unreachable at the point where a funclet would have unwound to a funclet that
// was already in the chain.
void WinEHPrepare::resolveFuncletAncestryForPath(
Function &F, SmallVectorImpl<BasicBlock *> &FuncletPath,
std::map<BasicBlock *, BasicBlock *> &Funclet2Orig) {
bool ClonedAnyChildren = false;
BasicBlock *CurFunclet = FuncletPath.back();
// Copy the children vector because we might changing it.
std::vector<BasicBlock *> Children(FuncletChildren[CurFunclet]);
for (BasicBlock *ChildFunclet : Children) {
// Don't allow the funclet chain to unwind back on itself.
// If this funclet is already in the current funclet chain, make the
// path to it through the current funclet unreachable.
bool IsCyclic = false;
BasicBlock *ChildIdentity = Funclet2Orig[ChildFunclet];
for (BasicBlock *Ancestor : FuncletPath) {
BasicBlock *AncestorIdentity = Funclet2Orig[Ancestor];
if (AncestorIdentity == ChildIdentity) {
IsCyclic = true;
break;
}
}
// If the unwind chain wraps back on itself, break the chain.
if (IsCyclic) {
makeFuncletEdgeUnreachable(CurFunclet, ChildFunclet);
continue;
}
// If this child funclet has other parents, clone the entire funclet.
if (FuncletParents[ChildFunclet].size() > 1) {
ChildFunclet = cloneFuncletForParent(F, ChildFunclet, CurFunclet);
Funclet2Orig[ChildFunclet] = ChildIdentity;
ClonedAnyChildren = true;
}
FuncletPath.push_back(ChildFunclet);
resolveFuncletAncestryForPath(F, FuncletPath, Funclet2Orig);
FuncletPath.pop_back();
}
// If we didn't clone any children, we can return now.
if (!ClonedAnyChildren)
return;
updateSiblingToSiblingUnwind(CurFunclet, BlockColors, FuncletBlocks,
FuncletParents, FuncletChildren, Funclet2Orig);
}
void WinEHPrepare::colorFunclets(Function &F,
SmallVectorImpl<BasicBlock *> &EntryBlocks) {
::colorFunclets(F, EntryBlocks, BlockColors, FuncletBlocks);
// The processing above actually accumulated the parent set for this
// funclet into the color set for its entry; use the parent set to
// populate the children map, and reset the color set to include just
// the funclet itself (no instruction can target a funclet entry except on
// that transitions to the child funclet).
for (BasicBlock *FuncletEntry : EntryBlocks) {
SetVector<BasicBlock *> &ColorMapItem = BlockColors[FuncletEntry];
// It will be rare for funclets to have multiple parents, but if any
// do we need to clone the funclet later to address that. Here we
// set a flag indicating that this case has arisen so that we don't
// have to do a lot of checking later to handle the more common case.
if (ColorMapItem.size() > 1)
FuncletCloningRequired = true;
for (BasicBlock *Parent : ColorMapItem) {
assert(std::find(FuncletChildren[Parent].begin(),
FuncletChildren[Parent].end(),
FuncletEntry) == std::end(FuncletChildren[Parent]));
FuncletChildren[Parent].push_back(FuncletEntry);
assert(std::find(FuncletParents[FuncletEntry].begin(),
FuncletParents[FuncletEntry].end(),
Parent) == std::end(FuncletParents[FuncletEntry]));
FuncletParents[FuncletEntry].push_back(Parent);
}
ColorMapItem.clear();
ColorMapItem.insert(FuncletEntry);
}
}
void llvm::calculateCatchReturnSuccessorColors(const Function *Fn,
WinEHFuncInfo &FuncInfo) {
SmallVector<BasicBlock *, 4> EntryBlocks;
// colorFunclets needs the set of EntryBlocks, get them using
// findFuncletEntryPoints.
findFuncletEntryPoints(const_cast<Function &>(*Fn), EntryBlocks);
std::map<BasicBlock *, SetVector<BasicBlock *>> BlockColors;
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
// Figure out which basic blocks belong to which funclets.
colorFunclets(const_cast<Function &>(*Fn), EntryBlocks, BlockColors,
FuncletBlocks);
// The static colorFunclets routine assigns multiple colors to funclet entries
// because that information is needed to calculate funclets' parent-child
// relationship, but we don't need those relationship here and ultimately the
// entry blocks should have the color of the funclet they begin.
for (BasicBlock *FuncletEntry : EntryBlocks) {
BlockColors[FuncletEntry].clear();
BlockColors[FuncletEntry].insert(FuncletEntry);
}
// We need to find the catchret successors. To do this, we must first find
// all the catchpad funclets.
for (auto &Funclet : FuncletBlocks) {
// Figure out what kind of funclet we are looking at; We only care about
// catchpads.
BasicBlock *FuncletPadBB = Funclet.first;
Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
if (!CatchPad)
continue;
// The users of a catchpad are always catchrets.
for (User *Exit : CatchPad->users()) {
auto *CatchReturn = dyn_cast<CatchReturnInst>(Exit);
if (!CatchReturn)
continue;
BasicBlock *CatchRetSuccessor = CatchReturn->getSuccessor();
SetVector<BasicBlock *> &SuccessorColors = BlockColors[CatchRetSuccessor];
assert(SuccessorColors.size() == 1 && "Expected BB to be monochrome!");
BasicBlock *Color = *SuccessorColors.begin();
// Record the catchret successor's funclet membership.
FuncInfo.CatchRetSuccessorColorMap[CatchReturn] = Color;
}
}
}
void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
// Strip PHI nodes off of EH pads.
SmallVector<PHINode *, 16> PHINodes;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = &*FI++;
if (!BB->isEHPad())
continue;
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Instruction *I = &*BI++;
auto *PN = dyn_cast<PHINode>(I);
// Stop at the first non-PHI.
if (!PN)
break;
AllocaInst *SpillSlot = insertPHILoads(PN, F);
if (SpillSlot)
insertPHIStores(PN, SpillSlot);
PHINodes.push_back(PN);
}
}
for (auto *PN : PHINodes) {
// There may be lingering uses on other EH PHIs being removed
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
PN->eraseFromParent();
}
}
void WinEHPrepare::cloneCommonBlocks(
Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
// We need to clone all blocks which belong to multiple funclets. Values are
// remapped throughout the funclet to propogate both the new instructions
// *and* the new basic blocks themselves.
for (BasicBlock *FuncletPadBB : EntryBlocks) {
std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletPadBB];
std::map<BasicBlock *, BasicBlock *> Orig2Clone;
ValueToValueMapTy VMap;
for (auto BlockIt = BlocksInFunclet.begin(),
BlockEnd = BlocksInFunclet.end();
BlockIt != BlockEnd;) {
// Increment the iterator inside the loop because we might be removing
// blocks from the set.
BasicBlock *BB = *BlockIt++;
SetVector<BasicBlock *> &ColorsForBB = BlockColors[BB];
// We don't need to do anything if the block is monochromatic.
size_t NumColorsForBB = ColorsForBB.size();
if (NumColorsForBB == 1)
continue;
// If this block is a catchendpad, it shouldn't be cloned.
// We will only see a catchendpad with multiple colors in the case where
// some funclet has multiple parents. In that case, the color will be
// resolved during the resolveFuncletAncestry processing.
// For now, find the catchpad that unwinds to this block and assign
// that catchpad's first parent to be the color for this block.
if (isa<CatchEndPadInst>(BB->getFirstNonPHI())) {
assert(
FuncletCloningRequired &&
"Found multi-colored catchendpad with no multi-parent funclets.");
BasicBlock *CatchParent = nullptr;
// There can only be one catchpad predecessor for a catchendpad.
for (BasicBlock *PredBB : predecessors(BB)) {
if (isa<CatchPadInst>(PredBB->getTerminator())) {
CatchParent = PredBB;
break;
}
}
// There must be one catchpad predecessor for a catchendpad.
assert(CatchParent && "No catchpad found for catchendpad.");
// If the catchpad has multiple parents, we'll clone the catchendpad
// when we clone the catchpad funclet and insert it into the correct
// funclet. For now, we just select the first parent of the catchpad
// and give the catchendpad that color.
BasicBlock *CorrectColor = FuncletParents[CatchParent].front();
assert(FuncletBlocks[CorrectColor].count(BB));
assert(BlockColors[BB].count(CorrectColor));
// Remove this block from the FuncletBlocks set of any funclet that
// isn't the funclet whose color we just selected.
for (BasicBlock *ContainingFunclet : BlockColors[BB])
if (ContainingFunclet != CorrectColor)
FuncletBlocks[ContainingFunclet].erase(BB);
BlockColors[BB].remove_if([&](BasicBlock *ContainingFunclet) {
return ContainingFunclet != CorrectColor;
});
// This should leave just one color for BB.
assert(BlockColors[BB].size() == 1);
continue;
}
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Cloning block \'" << BB->getName()
<< "\' for funclet \'" << FuncletPadBB->getName()
<< "\'.\n");
// Create a new basic block and copy instructions into it!
BasicBlock *CBB =
CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
// Insert the clone immediately after the original to ensure determinism
// and to keep the same relative ordering of any funclet's blocks.
CBB->insertInto(&F, BB->getNextNode());
// Add basic block mapping.
VMap[BB] = CBB;
// Record delta operations that we need to perform to our color mappings.
Orig2Clone[BB] = CBB;
}
// If nothing was cloned, we're done cloning in this funclet.
if (Orig2Clone.empty())
continue;
// Update our color mappings to reflect that one block has lost a color and
// another has gained a color.
for (auto &BBMapping : Orig2Clone) {
BasicBlock *OldBlock = BBMapping.first;
BasicBlock *NewBlock = BBMapping.second;
BlocksInFunclet.insert(NewBlock);
BlockColors[NewBlock].insert(FuncletPadBB);
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Assigned color \'" << FuncletPadBB->getName()
<< "\' to block \'" << NewBlock->getName()
<< "\'.\n");
BlocksInFunclet.erase(OldBlock);
BlockColors[OldBlock].remove(FuncletPadBB);
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Removed color \'" << FuncletPadBB->getName()
<< "\' from block \'" << OldBlock->getName()
<< "\'.\n");
// If we are cloning a funclet that might share a child funclet with
// another funclet, look to see if the cloned block is reached from a
// catchret instruction. If so, save this association so we can retrieve
// the possibly orphaned clone when we clone the child funclet.
if (FuncletCloningRequired) {
for (auto *Pred : predecessors(OldBlock)) {
auto *Terminator = Pred->getTerminator();
if (!isa<CatchReturnInst>(Terminator))
continue;
// If this block is reached from a catchret instruction in a funclet
// that has multiple parents, it will have a color for each of those
// parents. We just removed the color of one of the parents, but
// the cloned block will be unreachable until we clone the child
// funclet that contains the catchret instruction. In that case we
// need to create a mapping that will let us find the cloned block
// later and associate it with the cloned child funclet.
bool BlockWillBeEstranged = false;
for (auto *Color : BlockColors[Pred]) {
if (FuncletParents[Color].size() > 1) {
BlockWillBeEstranged = true;
break; // Breaks out of the color loop
}
}
if (BlockWillBeEstranged) {
EstrangedBlocks[FuncletPadBB][OldBlock] = NewBlock;
DEBUG_WITH_TYPE("winehprepare-coloring",
dbgs() << " Saved mapping of estranged block \'"
<< NewBlock->getName() << "\' for \'"
<< FuncletPadBB->getName() << "\'.\n");
break; // Breaks out of the predecessor loop
}
}
}
}
// Loop over all of the instructions in this funclet, fixing up operand
// references as we go. This uses VMap to do all the hard work.
for (BasicBlock *BB : BlocksInFunclet)
// Loop over all instructions, fixing each one as we find it...
for (Instruction &I : *BB)
RemapInstruction(&I, VMap,
RF_IgnoreMissingEntries | RF_NoModuleLevelChanges);
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to
// the PHI nodes for NewBB now.
for (auto &BBMapping : Orig2Clone) {
BasicBlock *OldBlock = BBMapping.first;
BasicBlock *NewBlock = BBMapping.second;
for (BasicBlock *SuccBB : successors(NewBlock)) {
for (Instruction &SuccI : *SuccBB) {
auto *SuccPN = dyn_cast<PHINode>(&SuccI);
if (!SuccPN)
break;
// Ok, we have a PHI node. Figure out what the incoming value was for
// the OldBlock.
int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
if (OldBlockIdx == -1)
break;
Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
// Remap the value if necessary.
if (auto *Inst = dyn_cast<Instruction>(IV)) {
ValueToValueMapTy::iterator I = VMap.find(Inst);
if (I != VMap.end())
IV = I->second;
}
SuccPN->addIncoming(IV, NewBlock);
}
}
}
for (ValueToValueMapTy::value_type VT : VMap) {
// If there were values defined in BB that are used outside the funclet,
// then we now have to update all uses of the value to use either the
// original value, the cloned value, or some PHI derived value. This can
// require arbitrary PHI insertion, of which we are prepared to do, clean
// these up now.
SmallVector<Use *, 16> UsesToRename;
auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
if (!OldI)
continue;
auto *NewI = cast<Instruction>(VT.second);
// Scan all uses of this instruction to see if it is used outside of its
// funclet, and if so, record them in UsesToRename.
for (Use &U : OldI->uses()) {
Instruction *UserI = cast<Instruction>(U.getUser());
BasicBlock *UserBB = UserI->getParent();
SetVector<BasicBlock *> &ColorsForUserBB = BlockColors[UserBB];
assert(!ColorsForUserBB.empty());
if (ColorsForUserBB.size() > 1 ||
*ColorsForUserBB.begin() != FuncletPadBB)
UsesToRename.push_back(&U);
}
// If there are no uses outside the block, we're done with this
// instruction.
if (UsesToRename.empty())
continue;
// We found a use of OldI outside of the funclet. Rename all uses of OldI
// that are outside its funclet to be uses of the appropriate PHI node
// etc.
SSAUpdater SSAUpdate;
SSAUpdate.Initialize(OldI->getType(), OldI->getName());
SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
while (!UsesToRename.empty())
SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
}
}
}
void WinEHPrepare::removeImplausibleTerminators(Function &F) {
// Remove implausible terminators and replace them with UnreachableInst.
for (auto &Funclet : FuncletBlocks) {
BasicBlock *FuncletPadBB = Funclet.first;
std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
for (BasicBlock *BB : BlocksInFunclet) {
TerminatorInst *TI = BB->getTerminator();
// CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
// The token consumed by a CatchReturnInst must match the funclet token.
bool IsUnreachableCatchret = false;
if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
// The token consumed by a CleanupReturnInst must match the funclet token.
bool IsUnreachableCleanupret = false;
if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
// The token consumed by a CleanupEndPadInst must match the funclet token.
bool IsUnreachableCleanupendpad = false;
if (auto *CEPI = dyn_cast<CleanupEndPadInst>(TI))
IsUnreachableCleanupendpad = CEPI->getCleanupPad() != CleanupPad;
if (IsUnreachableRet || IsUnreachableCatchret ||
IsUnreachableCleanupret || IsUnreachableCleanupendpad) {
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for (BasicBlock *SuccBB : TI->successors())
SuccBB->removePredecessor(BB);
if (IsUnreachableCleanupendpad) {
// We can't simply replace a cleanupendpad with unreachable, because
// its predecessor edges are EH edges and unreachable is not an EH
// pad. Change all predecessors to the "unwind to caller" form.
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE;) {
BasicBlock *Pred = *PI++;
removeUnwindEdge(Pred);
}
}
new UnreachableInst(BB->getContext(), TI);
TI->eraseFromParent();
}
// FIXME: Check for invokes/cleanuprets/cleanupendpads which unwind to
// implausible catchendpads (i.e. catchendpad not in immediate parent
// funclet).
}
}
}
void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
// Clean-up some of the mess we made by removing useles PHI nodes, trivial
// branches, etc.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = &*FI++;
SimplifyInstructionsInBlock(BB);
ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
MergeBlockIntoPredecessor(BB);
}
// We might have some unreachable blocks after cleaning up some impossible
// control flow.
removeUnreachableBlocks(F);
}
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
// Recolor the CFG to verify that all is well.
for (BasicBlock &BB : F) {
size_t NumColors = BlockColors[&BB].size();
assert(NumColors == 1 && "Expected monochromatic BB!");
if (NumColors == 0)
report_fatal_error("Uncolored BB!");
if (NumColors > 1)
report_fatal_error("Multicolor BB!");
bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
assert(!EHPadHasPHI && "EH Pad still has a PHI!");
if (EHPadHasPHI)
report_fatal_error("EH Pad still has a PHI!");
}
}
bool WinEHPrepare::prepareExplicitEH(
Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
replaceTerminatePadWithCleanup(F);
// Determine which blocks are reachable from which funclet entries.
colorFunclets(F, EntryBlocks);
if (!DisableDemotion)
demotePHIsOnFunclets(F);
cloneCommonBlocks(F, EntryBlocks);
resolveFuncletAncestry(F, EntryBlocks);
if (!DisableCleanups) {
removeImplausibleTerminators(F);
cleanupPreparedFunclets(F);
}
verifyPreparedFunclets(F);
BlockColors.clear();
FuncletBlocks.clear();
FuncletChildren.clear();
FuncletParents.clear();
EstrangedBlocks.clear();
FuncletCloningRequired = false;
return true;
}
// TODO: Share loads when one use dominates another, or when a catchpad exit
// dominates uses (needs dominators).
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
BasicBlock *PHIBlock = PN->getParent();
AllocaInst *SpillSlot = nullptr;
if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
// Insert a load in place of the PHI and replace all uses.
SpillSlot = new AllocaInst(PN->getType(), nullptr,
Twine(PN->getName(), ".wineh.spillslot"),
&F.getEntryBlock().front());
Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
&*PHIBlock->getFirstInsertionPt());
PN->replaceAllUsesWith(V);
return SpillSlot;
}
DenseMap<BasicBlock *, Value *> Loads;
for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
UI != UE;) {
Use &U = *UI++;
auto *UsingInst = cast<Instruction>(U.getUser());
BasicBlock *UsingBB = UsingInst->getParent();
if (UsingBB->isEHPad()) {
// Use is on an EH pad phi. Leave it alone; we'll insert loads and
// stores for it separately.
assert(isa<PHINode>(UsingInst));
continue;
}
replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
}
return SpillSlot;
}
// TODO: improve store placement. Inserting at def is probably good, but need
// to be careful not to introduce interfering stores (needs liveness analysis).
// TODO: identify related phi nodes that can share spill slots, and share them
// (also needs liveness).
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
AllocaInst *SpillSlot) {
// Use a worklist of (Block, Value) pairs -- the given Value needs to be
// stored to the spill slot by the end of the given Block.
SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
while (!Worklist.empty()) {
BasicBlock *EHBlock;
Value *InVal;
std::tie(EHBlock, InVal) = Worklist.pop_back_val();
PHINode *PN = dyn_cast<PHINode>(InVal);
if (PN && PN->getParent() == EHBlock) {
// The value is defined by another PHI we need to remove, with no room to
// insert a store after the PHI, so each predecessor needs to store its
// incoming value.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
Value *PredVal = PN->getIncomingValue(i);
// Undef can safely be skipped.
if (isa<UndefValue>(PredVal))
continue;
insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
}
} else {
// We need to store InVal, which dominates EHBlock, but can't put a store
// in EHBlock, so need to put stores in each predecessor.
for (BasicBlock *PredBlock : predecessors(EHBlock)) {
insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
}
}
}
}
void WinEHPrepare::insertPHIStore(
BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
if (PredBlock->isEHPad() &&
!isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
// Pred is unsplittable, so we need to queue it on the worklist.
Worklist.push_back({PredBlock, PredVal});
return;
}
// Otherwise, insert the store at the end of the basic block.
new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
}
void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
DenseMap<BasicBlock *, Value *> &Loads,
Function &F) {
// Lazilly create the spill slot.
if (!SpillSlot)
SpillSlot = new AllocaInst(V->getType(), nullptr,
Twine(V->getName(), ".wineh.spillslot"),
&F.getEntryBlock().front());
auto *UsingInst = cast<Instruction>(U.getUser());
if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
// If this is a PHI node, we can't insert a load of the value before
// the use. Instead insert the load in the predecessor block
// corresponding to the incoming value.
//
// Note that if there are multiple edges from a basic block to this
// PHI node that we cannot have multiple loads. The problem is that
// the resulting PHI node will have multiple values (from each load)
// coming in from the same block, which is illegal SSA form.
// For this reason, we keep track of and reuse loads we insert.
BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
if (auto *CatchRet =
dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
// Putting a load above a catchret and use on the phi would still leave
// a cross-funclet def/use. We need to split the edge, change the
// catchret to target the new block, and put the load there.
BasicBlock *PHIBlock = UsingInst->getParent();
BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
// SplitEdge gives us:
// IncomingBlock:
// ...
// br label %NewBlock
// NewBlock:
// catchret label %PHIBlock
// But we need:
// IncomingBlock:
// ...
// catchret label %NewBlock
// NewBlock:
// br label %PHIBlock
// So move the terminators to each others' blocks and swap their
// successors.
BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
Goto->removeFromParent();
CatchRet->removeFromParent();
IncomingBlock->getInstList().push_back(CatchRet);
NewBlock->getInstList().push_back(Goto);
Goto->setSuccessor(0, PHIBlock);
CatchRet->setSuccessor(NewBlock);
// Update the color mapping for the newly split edge.
SetVector<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
BlockColors[NewBlock] = ColorsForPHIBlock;
for (BasicBlock *FuncletPad : ColorsForPHIBlock)
FuncletBlocks[FuncletPad].insert(NewBlock);
// Treat the new block as incoming for load insertion.
IncomingBlock = NewBlock;
}
Value *&Load = Loads[IncomingBlock];
// Insert the load into the predecessor block
if (!Load)
Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
/*Volatile=*/false, IncomingBlock->getTerminator());
U.set(Load);
} else {
// Reload right before the old use.
auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
/*Volatile=*/false, UsingInst);
U.set(Load);
}
}
void WinEHFuncInfo::addIPToStateRange(const BasicBlock *PadBB,
MCSymbol *InvokeBegin,
MCSymbol *InvokeEnd) {
assert(PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) &&
"should get EH pad BB with precomputed state");
InvokeToStateMap[InvokeBegin] =
std::make_pair(EHPadStateMap[PadBB->getFirstNonPHI()], InvokeEnd);
}
|