summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/LiveDebugValues.cpp
blob: 19bd354e611ab0624d35311c86bc7bfcd93b6842 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This pass implements a data flow analysis that propagates debug location
/// information by inserting additional DBG_VALUE instructions into the machine
/// instruction stream. The pass internally builds debug location liveness
/// ranges to determine the points where additional DBG_VALUEs need to be
/// inserted.
///
/// This is a separate pass from DbgValueHistoryCalculator to facilitate
/// testing and improve modularity.
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "livedebugvalues"

STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");

// If @MI is a DBG_VALUE with debug value described by a defined
// register, returns the number of this register. In the other case, returns 0.
static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
  assert(MI.isDebugValue() && "expected a DBG_VALUE");
  assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
  // If location of variable is described using a register (directly
  // or indirectly), this register is always a first operand.
  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
}

namespace {

class LiveDebugValues : public MachineFunctionPass {
private:
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;

  enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };

  /// Keeps track of lexical scopes associated with a user value's source
  /// location.
  class UserValueScopes {
    DebugLoc DL;
    LexicalScopes &LS;
    SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;

  public:
    UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}

    /// Return true if current scope dominates at least one machine
    /// instruction in a given machine basic block.
    bool dominates(MachineBasicBlock *MBB) {
      if (LBlocks.empty())
        LS.getMachineBasicBlocks(DL, LBlocks);
      return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
    }
  };

  using FragmentInfo = DIExpression::FragmentInfo;
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;

  /// Storage for identifying a potentially inlined instance of a variable,
  /// or a fragment thereof.
  class DebugVariable {
    const DILocalVariable *Variable;
    OptFragmentInfo Fragment;
    const DILocation *InlinedAt;

    /// Fragment that will overlap all other fragments. Used as default when
    /// caller demands a fragment.
    static const FragmentInfo DefaultFragment;

  public:
    DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo,
                  const DILocation *InlinedAt)
        : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}

    DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo,
                  const DILocation *InlinedAt)
        : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}

    DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr,
                  const DILocation *InlinedAt)
        : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {}

    DebugVariable(const MachineInstr &MI)
        : DebugVariable(MI.getDebugVariable(),
                        MI.getDebugExpression()->getFragmentInfo(),
                        MI.getDebugLoc()->getInlinedAt()) {}

    const DILocalVariable *getVar() const { return Variable; }
    const OptFragmentInfo &getFragment() const { return Fragment; }
    const DILocation *getInlinedAt() const { return InlinedAt; }

    const FragmentInfo getFragmentDefault() const {
      return Fragment.getValueOr(DefaultFragment);
    }

    static bool isFragmentDefault(FragmentInfo &F) {
      return F == DefaultFragment;
    }

    bool operator==(const DebugVariable &Other) const {
      return std::tie(Variable, Fragment, InlinedAt) ==
             std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
    }

    bool operator<(const DebugVariable &Other) const {
      return std::tie(Variable, Fragment, InlinedAt) <
             std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
    }
  };

  friend struct llvm::DenseMapInfo<DebugVariable>;

  /// A pair of debug variable and value location.
  struct VarLoc {
    // The location at which a spilled variable resides. It consists of a
    // register and an offset.
    struct SpillLoc {
      unsigned SpillBase;
      int SpillOffset;
      bool operator==(const SpillLoc &Other) const {
        return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
      }
    };

    const DebugVariable Var;
    const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
    mutable UserValueScopes UVS;
    enum VarLocKind {
      InvalidKind = 0,
      RegisterKind,
      SpillLocKind,
      ImmediateKind
    } Kind = InvalidKind;

    /// The value location. Stored separately to avoid repeatedly
    /// extracting it from MI.
    union {
      uint64_t RegNo;
      SpillLoc SpillLocation;
      uint64_t Hash;
      int64_t Immediate;
      const ConstantFP *FPImm;
      const ConstantInt *CImm;
    } Loc;

    VarLoc(const MachineInstr &MI, LexicalScopes &LS)
        : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) {
      static_assert((sizeof(Loc) == sizeof(uint64_t)),
                    "hash does not cover all members of Loc");
      assert(MI.isDebugValue() && "not a DBG_VALUE");
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
      if (int RegNo = isDbgValueDescribedByReg(MI)) {
        Kind = RegisterKind;
        Loc.RegNo = RegNo;
      } else if (MI.getOperand(0).isImm()) {
        Kind = ImmediateKind;
        Loc.Immediate = MI.getOperand(0).getImm();
      } else if (MI.getOperand(0).isFPImm()) {
        Kind = ImmediateKind;
        Loc.FPImm = MI.getOperand(0).getFPImm();
      } else if (MI.getOperand(0).isCImm()) {
        Kind = ImmediateKind;
        Loc.CImm = MI.getOperand(0).getCImm();
      }
    }

    /// The constructor for spill locations.
    VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset,
           LexicalScopes &LS)
        : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) {
      assert(MI.isDebugValue() && "not a DBG_VALUE");
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
      Kind = SpillLocKind;
      Loc.SpillLocation = {SpillBase, SpillOffset};
    }

    // Is the Loc field a constant or constant object?
    bool isConstant() const { return Kind == ImmediateKind; }

    /// If this variable is described by a register, return it,
    /// otherwise return 0.
    unsigned isDescribedByReg() const {
      if (Kind == RegisterKind)
        return Loc.RegNo;
      return 0;
    }

    /// Determine whether the lexical scope of this value's debug location
    /// dominates MBB.
    bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    LLVM_DUMP_METHOD void dump() const { MI.dump(); }
#endif

    bool operator==(const VarLoc &Other) const {
      return Kind == Other.Kind && Var == Other.Var &&
             Loc.Hash == Other.Loc.Hash;
    }

    /// This operator guarantees that VarLocs are sorted by Variable first.
    bool operator<(const VarLoc &Other) const {
      if (Var == Other.Var)
        return Loc.Hash < Other.Loc.Hash;
      return Var < Other.Var;
    }
  };

  using VarLocMap = UniqueVector<VarLoc>;
  using VarLocSet = SparseBitVector<>;
  using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
  struct TransferDebugPair {
    MachineInstr *TransferInst;
    MachineInstr *DebugInst;
  };
  using TransferMap = SmallVector<TransferDebugPair, 4>;

  // Types for recording sets of variable fragments that overlap. For a given
  // local variable, we record all other fragments of that variable that could
  // overlap it, to reduce search time.
  using FragmentOfVar =
      std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
  using OverlapMap =
      DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;

  // Helper while building OverlapMap, a map of all fragments seen for a given
  // DILocalVariable.
  using VarToFragments =
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;

  /// This holds the working set of currently open ranges. For fast
  /// access, this is done both as a set of VarLocIDs, and a map of
  /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
  /// previous open ranges for the same variable.
  class OpenRangesSet {
    VarLocSet VarLocs;
    SmallDenseMap<DebugVariable, unsigned, 8> Vars;
    OverlapMap &OverlappingFragments;

  public:
    OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}

    const VarLocSet &getVarLocs() const { return VarLocs; }

    /// Terminate all open ranges for Var by removing it from the set.
    void erase(DebugVariable Var);

    /// Terminate all open ranges listed in \c KillSet by removing
    /// them from the set.
    void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
      VarLocs.intersectWithComplement(KillSet);
      for (unsigned ID : KillSet)
        Vars.erase(VarLocIDs[ID].Var);
    }

    /// Insert a new range into the set.
    void insert(unsigned VarLocID, DebugVariable Var) {
      VarLocs.set(VarLocID);
      Vars.insert({Var, VarLocID});
    }

    /// Empty the set.
    void clear() {
      VarLocs.clear();
      Vars.clear();
    }

    /// Return whether the set is empty or not.
    bool empty() const {
      assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
      return VarLocs.empty();
    }
  };

  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
                          unsigned &Reg);
  /// If a given instruction is identified as a spill, return the spill location
  /// and set \p Reg to the spilled register.
  Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
                                                  MachineFunction *MF,
                                                  unsigned &Reg);
  /// Given a spill instruction, extract the register and offset used to
  /// address the spill location in a target independent way.
  VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
  void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
                               TransferMap &Transfers, VarLocMap &VarLocIDs,
                               unsigned OldVarID, TransferKind Kind,
                               unsigned NewReg = 0);

  void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
                          VarLocMap &VarLocIDs);
  void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
                                  VarLocMap &VarLocIDs, TransferMap &Transfers);
  void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
                            VarLocMap &VarLocIDs, TransferMap &Transfers);
  void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
                           const VarLocMap &VarLocIDs);
  bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
                              VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);

  bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
               VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
               TransferMap &Transfers, bool transferChanges,
               OverlapMap &OverlapFragments, VarToFragments &SeenFragments);

  void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
                             OverlapMap &OLapMap);

  bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
            const VarLocMap &VarLocIDs,
            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
            SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);

  bool ExtendRanges(MachineFunction &MF);

public:
  static char ID;

  /// Default construct and initialize the pass.
  LiveDebugValues();

  /// Tell the pass manager which passes we depend on and what
  /// information we preserve.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  /// Print to ostream with a message.
  void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
                        const VarLocMap &VarLocIDs, const char *msg,
                        raw_ostream &Out) const;

  /// Calculate the liveness information for the given machine function.
  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> {
  using DV = LiveDebugValues::DebugVariable;
  using OptFragmentInfo = LiveDebugValues::OptFragmentInfo;
  using FragmentInfo = LiveDebugValues::FragmentInfo;

  // Empty key: no key should be generated that has no DILocalVariable.
  static inline DV getEmptyKey() {
    return DV(nullptr, OptFragmentInfo(), nullptr);
  }

  // Difference in tombstone is that the Optional is meaningful
  static inline DV getTombstoneKey() {
    return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
  }

  static unsigned getHashValue(const DV &D) {
    unsigned HV = 0;
    const OptFragmentInfo &Fragment = D.getFragment();
    if (Fragment)
      HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment);

    return hash_combine(D.getVar(), HV, D.getInlinedAt());
  }

  static bool isEqual(const DV &A, const DV &B) { return A == B; }
};

} // namespace llvm

//===----------------------------------------------------------------------===//
//            Implementation
//===----------------------------------------------------------------------===//

const DIExpression::FragmentInfo
    LiveDebugValues::DebugVariable::DefaultFragment = {
        std::numeric_limits<uint64_t>::max(),
        std::numeric_limits<uint64_t>::min()};

char LiveDebugValues::ID = 0;

char &llvm::LiveDebugValuesID = LiveDebugValues::ID;

INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
                false, false)

/// Default construct and initialize the pass.
LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
  initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
}

/// Tell the pass manager which passes we depend on and what information we
/// preserve.
void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// Erase a variable from the set of open ranges, and additionally erase any
/// fragments that may overlap it.
void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) {
  // Erasure helper.
  auto DoErase = [this](DebugVariable VarToErase) {
    auto It = Vars.find(VarToErase);
    if (It != Vars.end()) {
      unsigned ID = It->second;
      VarLocs.reset(ID);
      Vars.erase(It);
    }
  };

  // Erase the variable/fragment that ends here.
  DoErase(Var);

  // Extract the fragment. Interpret an empty fragment as one that covers all
  // possible bits.
  FragmentInfo ThisFragment = Var.getFragmentDefault();

  // There may be fragments that overlap the designated fragment. Look them up
  // in the pre-computed overlap map, and erase them too.
  auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment});
  if (MapIt != OverlappingFragments.end()) {
    for (auto Fragment : MapIt->second) {
      LiveDebugValues::OptFragmentInfo FragmentHolder;
      if (!DebugVariable::isFragmentDefault(Fragment))
        FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
      DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()});
    }
  }
}

//===----------------------------------------------------------------------===//
//            Debug Range Extension Implementation
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
                                       const VarLocInMBB &V,
                                       const VarLocMap &VarLocIDs,
                                       const char *msg,
                                       raw_ostream &Out) const {
  Out << '\n' << msg << '\n';
  for (const MachineBasicBlock &BB : MF) {
    const VarLocSet &L = V.lookup(&BB);
    if (L.empty())
      continue;
    Out << "MBB: " << BB.getNumber() << ":\n";
    for (unsigned VLL : L) {
      const VarLoc &VL = VarLocIDs[VLL];
      Out << " Var: " << VL.Var.getVar()->getName();
      Out << " MI: ";
      VL.dump();
    }
  }
  Out << "\n";
}
#endif

LiveDebugValues::VarLoc::SpillLoc
LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
  assert(MI.hasOneMemOperand() &&
         "Spill instruction does not have exactly one memory operand?");
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
         "Inconsistent memory operand in spill instruction");
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
  const MachineBasicBlock *MBB = MI.getParent();
  unsigned Reg;
  int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
  return {Reg, Offset};
}

/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
                                         OpenRangesSet &OpenRanges,
                                         VarLocMap &VarLocIDs) {
  if (!MI.isDebugValue())
    return;
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  // End all previous ranges of Var.
  DebugVariable V(Var, Expr, InlinedAt);
  OpenRanges.erase(V);

  // Add the VarLoc to OpenRanges from this DBG_VALUE.
  unsigned ID;
  if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
      MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
    // Use normal VarLoc constructor for registers and immediates.
    VarLoc VL(MI, LS);
    ID = VarLocIDs.insert(VL);
    OpenRanges.insert(ID, VL.Var);
  } else if (MI.hasOneMemOperand()) {
    // It's a stack spill -- fetch spill base and offset.
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
    VarLoc VL(MI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS);
    ID = VarLocIDs.insert(VL);
    OpenRanges.insert(ID, VL.Var);
  } else {
    // This must be an undefined location. We should leave OpenRanges closed.
    assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
           "Unexpected non-undef DBG_VALUE encountered");
  }
}

/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
/// new VarLoc. If \p NewReg is different than default zero value then the
/// new location will be register location created by the copy like instruction,
/// otherwise it is variable's location on the stack.
void LiveDebugValues::insertTransferDebugPair(
    MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
    VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
    unsigned NewReg) {
  const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
  MachineFunction *MF = MI.getParent()->getParent();
  MachineInstr *NewDebugInstr;

  auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr,
                        &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) {
    unsigned LocId = VarLocIDs.insert(VL);

    // Close this variable's previous location range.
    DebugVariable V(*DebugInstr);
    OpenRanges.erase(V);

    OpenRanges.insert(LocId, VL.Var);
    // The newly created DBG_VALUE instruction NewDebugInstr must be inserted
    // after MI. Keep track of the pairing.
    TransferDebugPair MIP = {&MI, NewDebugInstr};
    Transfers.push_back(MIP);
  };

  // End all previous ranges of Var.
  OpenRanges.erase(VarLocIDs[OldVarID].Var);
  switch (Kind) {
  case TransferKind::TransferCopy: {
    assert(NewReg &&
           "No register supplied when handling a copy of a debug value");
    // Create a DBG_VALUE instruction to describe the Var in its new
    // register location.
    NewDebugInstr = BuildMI(
        *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(),
        DebugInstr->isIndirectDebugValue(), NewReg,
        DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression());
    if (DebugInstr->isIndirectDebugValue())
      NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
    VarLoc VL(*NewDebugInstr, LS);
    ProcessVarLoc(VL, NewDebugInstr);
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
                                    /*AddNewLine*/true, TII));
    return;
  }
  case TransferKind::TransferSpill: {
    // Create a DBG_VALUE instruction to describe the Var in its spilled
    // location.
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
    auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(),
                                            DIExpression::ApplyOffset,
                                            SpillLocation.SpillOffset);
    NewDebugInstr = BuildMI(
        *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true,
        SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr);
    VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase,
              SpillLocation.SpillOffset, LS);
    ProcessVarLoc(VL, NewDebugInstr);
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
                                    /*AddNewLine*/true, TII));
    return;
  }
  case TransferKind::TransferRestore: {
    assert(NewReg &&
           "No register supplied when handling a restore of a debug value");
    MachineFunction *MF = MI.getMF();
    DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
    NewDebugInstr =
        BuildMI(*MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false,
                NewReg, DebugInstr->getDebugVariable(), DIB.createExpression());
    VarLoc VL(*NewDebugInstr, LS);
    ProcessVarLoc(VL, NewDebugInstr);
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
                                    /*AddNewLine*/true, TII));
    return;
  }
  }
  llvm_unreachable("Invalid transfer kind");
}

/// A definition of a register may mark the end of a range.
void LiveDebugValues::transferRegisterDef(MachineInstr &MI,
                                          OpenRangesSet &OpenRanges,
                                          const VarLocMap &VarLocIDs) {
  MachineFunction *MF = MI.getMF();
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
  SparseBitVector<> KillSet;
  for (const MachineOperand &MO : MI.operands()) {
    // Determine whether the operand is a register def.  Assume that call
    // instructions never clobber SP, because some backends (e.g., AArch64)
    // never list SP in the regmask.
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
        TRI->isPhysicalRegister(MO.getReg()) &&
        !(MI.isCall() && MO.getReg() == SP)) {
      // Remove ranges of all aliased registers.
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
        for (unsigned ID : OpenRanges.getVarLocs())
          if (VarLocIDs[ID].isDescribedByReg() == *RAI)
            KillSet.set(ID);
    } else if (MO.isRegMask()) {
      // Remove ranges of all clobbered registers. Register masks don't usually
      // list SP as preserved.  While the debug info may be off for an
      // instruction or two around callee-cleanup calls, transferring the
      // DEBUG_VALUE across the call is still a better user experience.
      for (unsigned ID : OpenRanges.getVarLocs()) {
        unsigned Reg = VarLocIDs[ID].isDescribedByReg();
        if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
          KillSet.set(ID);
      }
    }
  }
  OpenRanges.erase(KillSet, VarLocIDs);
}

/// Decide if @MI is a spill instruction and return true if it is. We use 2
/// criteria to make this decision:
/// - Is this instruction a store to a spill slot?
/// - Is there a register operand that is both used and killed?
/// TODO: Store optimization can fold spills into other stores (including
/// other spills). We do not handle this yet (more than one memory operand).
bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
                                         MachineFunction *MF, unsigned &Reg) {
  SmallVector<const MachineMemOperand*, 1> Accesses;

  // TODO: Handle multiple stores folded into one.
  if (!MI.hasOneMemOperand())
    return false;

  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
    return false; // This is not a spill instruction, since no valid size was
                  // returned from either function.

  auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
    if (!MO.isReg() || !MO.isUse()) {
      Reg = 0;
      return false;
    }
    Reg = MO.getReg();
    return MO.isKill();
  };

  for (const MachineOperand &MO : MI.operands()) {
    // In a spill instruction generated by the InlineSpiller the spilled
    // register has its kill flag set.
    if (isKilledReg(MO, Reg))
      return true;
    if (Reg != 0) {
      // Check whether next instruction kills the spilled register.
      // FIXME: Current solution does not cover search for killed register in
      // bundles and instructions further down the chain.
      auto NextI = std::next(MI.getIterator());
      // Skip next instruction that points to basic block end iterator.
      if (MI.getParent()->end() == NextI)
        continue;
      unsigned RegNext;
      for (const MachineOperand &MONext : NextI->operands()) {
        // Return true if we came across the register from the
        // previous spill instruction that is killed in NextI.
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
          return true;
      }
    }
  }
  // Return false if we didn't find spilled register.
  return false;
}

Optional<LiveDebugValues::VarLoc::SpillLoc>
LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
                                      MachineFunction *MF, unsigned &Reg) {
  if (!MI.hasOneMemOperand())
    return None;

  // FIXME: Handle folded restore instructions with more than one memory
  // operand.
  if (MI.getRestoreSize(TII)) {
    Reg = MI.getOperand(0).getReg();
    return extractSpillBaseRegAndOffset(MI);
  }
  return None;
}

/// A spilled register may indicate that we have to end the current range of
/// a variable and create a new one for the spill location.
/// A restored register may indicate the reverse situation.
/// We don't want to insert any instructions in process(), so we just create
/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
/// It will be inserted into the BB when we're done iterating over the
/// instructions.
void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
                                                 OpenRangesSet &OpenRanges,
                                                 VarLocMap &VarLocIDs,
                                                 TransferMap &Transfers) {
  MachineFunction *MF = MI.getMF();
  TransferKind TKind;
  unsigned Reg;
  Optional<VarLoc::SpillLoc> Loc;

  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););

  if (isSpillInstruction(MI, MF, Reg)) {
    TKind = TransferKind::TransferSpill;
    LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
                      << "\n");
  } else {
    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
      return;
    TKind = TransferKind::TransferRestore;
    LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
                      << "\n");
  }
  // Check if the register or spill location is the location of a debug value.
  for (unsigned ID : OpenRanges.getVarLocs()) {
    if (TKind == TransferKind::TransferSpill &&
        VarLocIDs[ID].isDescribedByReg() == Reg) {
      LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
                        << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
    } else if (TKind == TransferKind::TransferRestore &&
               VarLocIDs[ID].Loc.SpillLocation == *Loc) {
      LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
                        << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
    } else
      continue;
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
                            Reg);
    return;
  }
}

/// If \p MI is a register copy instruction, that copies a previously tracked
/// value from one register to another register that is callee saved, we
/// create new DBG_VALUE instruction  described with copy destination register.
void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
                                           OpenRangesSet &OpenRanges,
                                           VarLocMap &VarLocIDs,
                                           TransferMap &Transfers) {
  const MachineOperand *SrcRegOp, *DestRegOp;

  if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
      !DestRegOp->isDef())
    return;

  auto isCalleSavedReg = [&](unsigned Reg) {
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  };

  unsigned SrcReg = SrcRegOp->getReg();
  unsigned DestReg = DestRegOp->getReg();

  // We want to recognize instructions where destination register is callee
  // saved register. If register that could be clobbered by the call is
  // included, there would be a great chance that it is going to be clobbered
  // soon. It is more likely that previous register location, which is callee
  // saved, is going to stay unclobbered longer, even if it is killed.
  if (!isCalleSavedReg(DestReg))
    return;

  for (unsigned ID : OpenRanges.getVarLocs()) {
    if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
      insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
                              TransferKind::TransferCopy, DestReg);
      return;
    }
  }
}

/// Terminate all open ranges at the end of the current basic block.
bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
                                             OpenRangesSet &OpenRanges,
                                             VarLocInMBB &OutLocs,
                                             const VarLocMap &VarLocIDs) {
  bool Changed = false;
  const MachineBasicBlock *CurMBB = MI.getParent();
  if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
    return false;

  if (OpenRanges.empty())
    return false;

  LLVM_DEBUG(for (unsigned ID
                  : OpenRanges.getVarLocs()) {
    // Copy OpenRanges to OutLocs, if not already present.
    dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
    VarLocIDs[ID].dump();
  });
  VarLocSet &VLS = OutLocs[CurMBB];
  Changed = VLS |= OpenRanges.getVarLocs();
  // New OutLocs set may be different due to spill, restore or register
  // copy instruction processing.
  if (Changed)
    VLS = OpenRanges.getVarLocs();
  OpenRanges.clear();
  return Changed;
}

/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
///           fragment usage.
/// \param SeenFragments Map from DILocalVariable to all fragments of that
///           Variable which are known to exist.
/// \param OverlappingFragments The overlap map being constructed, from one
///           Var/Fragment pair to a vector of fragments known to overlap.
void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
                                            VarToFragments &SeenFragments,
                                            OverlapMap &OverlappingFragments) {
  DebugVariable MIVar(MI);
  FragmentInfo ThisFragment = MIVar.getFragmentDefault();

  // If this is the first sighting of this variable, then we are guaranteed
  // there are currently no overlapping fragments either. Initialize the set
  // of seen fragments, record no overlaps for the current one, and return.
  auto SeenIt = SeenFragments.find(MIVar.getVar());
  if (SeenIt == SeenFragments.end()) {
    SmallSet<FragmentInfo, 4> OneFragment;
    OneFragment.insert(ThisFragment);
    SeenFragments.insert({MIVar.getVar(), OneFragment});

    OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
    return;
  }

  // If this particular Variable/Fragment pair already exists in the overlap
  // map, it has already been accounted for.
  auto IsInOLapMap =
      OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
  if (!IsInOLapMap.second)
    return;

  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
  auto &AllSeenFragments = SeenIt->second;

  // Otherwise, examine all other seen fragments for this variable, with "this"
  // fragment being a previously unseen fragment. Record any pair of
  // overlapping fragments.
  for (auto &ASeenFragment : AllSeenFragments) {
    // Does this previously seen fragment overlap?
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
      // Yes: Mark the current fragment as being overlapped.
      ThisFragmentsOverlaps.push_back(ASeenFragment);
      // Mark the previously seen fragment as being overlapped by the current
      // one.
      auto ASeenFragmentsOverlaps =
          OverlappingFragments.find({MIVar.getVar(), ASeenFragment});
      assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
             "Previously seen var fragment has no vector of overlaps");
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
    }
  }

  AllSeenFragments.insert(ThisFragment);
}

/// This routine creates OpenRanges and OutLocs.
bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
                              VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
                              TransferMap &Transfers, bool transferChanges,
                              OverlapMap &OverlapFragments,
                              VarToFragments &SeenFragments) {
  bool Changed = false;
  transferDebugValue(MI, OpenRanges, VarLocIDs);
  transferRegisterDef(MI, OpenRanges, VarLocIDs);
  if (transferChanges) {
    transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
    transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
  } else {
    // Build up a map of overlapping fragments on the first run through.
    if (MI.isDebugValue())
      accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
  }
  Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
  return Changed;
}

/// This routine joins the analysis results of all incoming edges in @MBB by
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
/// source variable in all the predecessors of @MBB reside in the same location.
bool LiveDebugValues::join(
    MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
    const VarLocMap &VarLocIDs,
    SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
    SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;

  VarLocSet InLocsT; // Temporary incoming locations.

  // For all predecessors of this MBB, find the set of VarLocs that
  // can be joined.
  int NumVisited = 0;
  for (auto p : MBB.predecessors()) {
    // Ignore unvisited predecessor blocks.  As we are processing
    // the blocks in reverse post-order any unvisited block can
    // be considered to not remove any incoming values.
    if (!Visited.count(p)) {
      LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
                        << "\n");
      continue;
    }
    auto OL = OutLocs.find(p);
    // Join is null in case of empty OutLocs from any of the pred.
    if (OL == OutLocs.end())
      return false;

    // Just copy over the Out locs to incoming locs for the first visited
    // predecessor, and for all other predecessors join the Out locs.
    if (!NumVisited)
      InLocsT = OL->second;
    else
      InLocsT &= OL->second;

    LLVM_DEBUG({
      if (!InLocsT.empty()) {
        for (auto ID : InLocsT)
          dbgs() << "  gathered candidate incoming var: "
                 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
      }
    });

    NumVisited++;
  }

  // Filter out DBG_VALUES that are out of scope.
  VarLocSet KillSet;
  bool IsArtificial = ArtificialBlocks.count(&MBB);
  if (!IsArtificial) {
    for (auto ID : InLocsT) {
      if (!VarLocIDs[ID].dominates(MBB)) {
        KillSet.set(ID);
        LLVM_DEBUG({
          auto Name = VarLocIDs[ID].Var.getVar()->getName();
          dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
        });
      }
    }
  }
  InLocsT.intersectWithComplement(KillSet);

  // As we are processing blocks in reverse post-order we
  // should have processed at least one predecessor, unless it
  // is the entry block which has no predecessor.
  assert((NumVisited || MBB.pred_empty()) &&
         "Should have processed at least one predecessor");
  if (InLocsT.empty())
    return false;

  VarLocSet &ILS = InLocs[&MBB];

  // Insert DBG_VALUE instructions, if not already inserted.
  VarLocSet Diff = InLocsT;
  Diff.intersectWithComplement(ILS);
  for (auto ID : Diff) {
    // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
    // new range is started for the var from the mbb's beginning by inserting
    // a new DBG_VALUE. process() will end this range however appropriate.
    const VarLoc &DiffIt = VarLocIDs[ID];
    const MachineInstr *DebugInstr = &DiffIt.MI;
    MachineInstr *MI = nullptr;
    if (DiffIt.isConstant()) {
      MachineOperand MO(DebugInstr->getOperand(0));
      MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
                   DebugInstr->getDesc(), false, MO,
                   DebugInstr->getDebugVariable(),
                   DebugInstr->getDebugExpression());
    } else {
      MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
                   DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(),
                   DebugInstr->getOperand(0).getReg(),
                   DebugInstr->getDebugVariable(),
                   DebugInstr->getDebugExpression());
      if (DebugInstr->isIndirectDebugValue())
        MI->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
    }
    LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
    ILS.set(ID);
    ++NumInserted;
    Changed = true;
  }
  return Changed;
}

/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");

  bool Changed = false;
  bool OLChanged = false;
  bool MBBJoined = false;

  VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
  OverlapMap OverlapFragments; // Map of overlapping variable fragments
  OpenRangesSet OpenRanges(OverlapFragments);
                              // Ranges that are open until end of bb.
  VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
  VarLocInMBB InLocs;         // Ranges that are incoming after joining.
  TransferMap Transfers;      // DBG_VALUEs associated with spills.

  VarToFragments SeenFragments;

  // Blocks which are artificial, i.e. blocks which exclusively contain
  // instructions without locations, or with line 0 locations.
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;

  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Pending;

  enum : bool { dontTransferChanges = false, transferChanges = true };

  // Initialize every mbb with OutLocs.
  // We are not looking at any spill instructions during the initial pass
  // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
  // instructions for spills of registers that are known to be user variables
  // within the BB in which the spill occurs.
  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
              dontTransferChanges, OverlapFragments, SeenFragments);
    }
  }

  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
    if (const DebugLoc &DL = MI.getDebugLoc())
      return DL.getLine() != 0;
    return false;
  };
  for (auto &MBB : MF)
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
      ArtificialBlocks.insert(&MBB);

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                              "OutLocs after initialization", dbgs()));

  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  unsigned int RPONumber = 0;
  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
    OrderToBB[RPONumber] = *RI;
    BBToOrder[*RI] = RPONumber;
    Worklist.push(RPONumber);
    ++RPONumber;
  }
  // This is a standard "union of predecessor outs" dataflow problem.
  // To solve it, we perform join() and process() using the two worklist method
  // until the ranges converge.
  // Ranges have converged when both worklists are empty.
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
  while (!Worklist.empty() || !Pending.empty()) {
    // We track what is on the pending worklist to avoid inserting the same
    // thing twice.  We could avoid this with a custom priority queue, but this
    // is probably not worth it.
    SmallPtrSet<MachineBasicBlock *, 16> OnPending;
    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
    while (!Worklist.empty()) {
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
      Worklist.pop();
      MBBJoined =
          join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks);
      Visited.insert(MBB);
      if (MBBJoined) {
        MBBJoined = false;
        Changed = true;
        // Now that we have started to extend ranges across BBs we need to
        // examine spill instructions to see whether they spill registers that
        // correspond to user variables.
        for (auto &MI : *MBB)
          OLChanged |=
              process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
                      transferChanges, OverlapFragments, SeenFragments);

        // Add any DBG_VALUE instructions necessitated by spills.
        for (auto &TR : Transfers)
          MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
                           TR.DebugInst);
        Transfers.clear();

        LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                                    "OutLocs after propagating", dbgs()));
        LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
                                    "InLocs after propagating", dbgs()));

        if (OLChanged) {
          OLChanged = false;
          for (auto s : MBB->successors())
            if (OnPending.insert(s).second) {
              Pending.push(BBToOrder[s]);
            }
        }
      }
    }
    Worklist.swap(Pending);
    // At this point, pending must be empty, since it was just the empty
    // worklist
    assert(Pending.empty() && "Pending should be empty");
  }

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
  LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
  return Changed;
}

bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
  if (!MF.getFunction().getSubprogram())
    // LiveDebugValues will already have removed all DBG_VALUEs.
    return false;

  // Skip functions from NoDebug compilation units.
  if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
      DICompileUnit::NoDebug)
    return false;

  TRI = MF.getSubtarget().getRegisterInfo();
  TII = MF.getSubtarget().getInstrInfo();
  TFI = MF.getSubtarget().getFrameLowering();
  TFI->determineCalleeSaves(MF, CalleeSavedRegs,
                            make_unique<RegScavenger>().get());
  LS.initialize(MF);

  bool Changed = ExtendRanges(MF);
  return Changed;
}
OpenPOWER on IntegriCloud