1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegisterBankInfo class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm> // For std::max.
#define DEBUG_TYPE "registerbankinfo"
using namespace llvm;
const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
//------------------------------------------------------------------------------
// RegisterBankInfo implementation.
//------------------------------------------------------------------------------
RegisterBankInfo::RegisterBankInfo(unsigned NumRegBanks)
: NumRegBanks(NumRegBanks) {
RegBanks.reset(new RegisterBank[NumRegBanks]);
}
bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
DEBUG(for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
const RegisterBank &RegBank = getRegBank(Idx);
assert(Idx == RegBank.getID() &&
"ID does not match the index in the array");
dbgs() << "Verify " << RegBank << '\n';
assert(RegBank.verify(TRI) && "RegBank is invalid");
});
return true;
}
void RegisterBankInfo::createRegisterBank(unsigned ID, const char *Name) {
DEBUG(dbgs() << "Create register bank: " << ID << " with name \"" << Name
<< "\"\n");
RegisterBank &RegBank = getRegBank(ID);
assert(RegBank.getID() == RegisterBank::InvalidID &&
"A register bank should be created only once");
RegBank.ID = ID;
RegBank.Name = Name;
}
void RegisterBankInfo::addRegBankCoverage(unsigned ID, unsigned RCId,
const TargetRegisterInfo &TRI) {
RegisterBank &RB = getRegBank(ID);
unsigned NbOfRegClasses = TRI.getNumRegClasses();
DEBUG(dbgs() << "Add coverage for: " << RB << '\n');
// Check if RB is underconstruction.
if (!RB.isValid())
RB.ContainedRegClasses.resize(NbOfRegClasses);
else if (RB.covers(*TRI.getRegClass(RCId)))
// If RB already covers this register class, there is nothing
// to do.
return;
BitVector &Covered = RB.ContainedRegClasses;
SmallVector<unsigned, 8> WorkList;
WorkList.push_back(RCId);
Covered.set(RCId);
unsigned &MaxSize = RB.Size;
do {
unsigned RCId = WorkList.pop_back_val();
const TargetRegisterClass &CurRC = *TRI.getRegClass(RCId);
DEBUG(dbgs() << "Examine: " << TRI.getRegClassName(&CurRC)
<< "(Size*8: " << (CurRC.getSize() * 8) << ")\n");
// Remember the biggest size in bits.
MaxSize = std::max(MaxSize, CurRC.getSize() * 8);
// Walk through all sub register classes and push them into the worklist.
bool First = true;
for (BitMaskClassIterator It(CurRC.getSubClassMask(), TRI); It.isValid();
++It) {
unsigned SubRCId = It.getID();
if (!Covered.test(SubRCId)) {
if (First)
DEBUG(dbgs() << " Enqueue sub-class: ");
DEBUG(dbgs() << TRI.getRegClassName(TRI.getRegClass(SubRCId)) << ", ");
WorkList.push_back(SubRCId);
// Remember that we saw the sub class.
Covered.set(SubRCId);
First = false;
}
}
if (!First)
DEBUG(dbgs() << '\n');
// Push also all the register classes that can be accessed via a
// subreg index, i.e., its subreg-class (which is different than
// its subclass).
//
// Note: It would probably be faster to go the other way around
// and have this method add only super classes, since this
// information is available in a more efficient way. However, it
// feels less natural for the client of this APIs plus we will
// TableGen the whole bitset at some point, so compile time for
// the initialization is not very important.
First = true;
for (unsigned SubRCId = 0; SubRCId < NbOfRegClasses; ++SubRCId) {
if (Covered.test(SubRCId))
continue;
bool Pushed = false;
const TargetRegisterClass *SubRC = TRI.getRegClass(SubRCId);
for (SuperRegClassIterator SuperRCIt(SubRC, &TRI); SuperRCIt.isValid();
++SuperRCIt) {
if (Pushed)
break;
for (BitMaskClassIterator It(SuperRCIt.getMask(), TRI); It.isValid();
++It) {
unsigned SuperRCId = It.getID();
if (SuperRCId == RCId) {
if (First)
DEBUG(dbgs() << " Enqueue subreg-class: ");
DEBUG(dbgs() << TRI.getRegClassName(SubRC) << ", ");
WorkList.push_back(SubRCId);
// Remember that we saw the sub class.
Covered.set(SubRCId);
Pushed = true;
First = false;
break;
}
}
}
}
if (!First)
DEBUG(dbgs() << '\n');
} while (!WorkList.empty());
}
const RegisterBank *
RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return &getRegBankFromRegClass(*TRI.getMinimalPhysRegClass(Reg));
assert(Reg && "NoRegister does not have a register bank");
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
return RB;
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
return &getRegBankFromRegClass(*RC);
return nullptr;
}
const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI) const {
// The mapping of the registers may be available via the
// register class constraints.
const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
if (!RC)
return nullptr;
const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
// Sanity check that the target properly implemented getRegBankFromRegClass.
assert(RegBank.covers(*RC) &&
"The mapping of the register bank does not make sense");
return &RegBank;
}
const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
// If the register already has a class, fallback to MRI::constrainRegClass.
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (RegClassOrBank.is<const TargetRegisterClass *>())
return MRI.constrainRegClass(Reg, &RC);
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
assert(RB && "Generic register does not have a register bank");
// Otherwise, all we can do is ensure the bank covers the class, and set it.
if (!RB->covers(RC))
return nullptr;
MRI.setRegClass(Reg, &RC);
return &RC;
}
RegisterBankInfo::InstructionMapping
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
RegisterBankInfo::InstructionMapping Mapping(DefaultMappingID, /*Cost*/ 1,
MI.getNumOperands());
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
// We may need to query the instruction encoding to guess the mapping.
const TargetInstrInfo &TII = *STI.getInstrInfo();
// Before doing anything complicated check if the mapping is not
// directly available.
bool CompleteMapping = true;
// For copies we want to walk over the operands and try to find one
// that has a register bank.
bool isCopyLike = MI.isCopy() || MI.isPHI();
// Remember the register bank for reuse for copy-like instructions.
const RegisterBank *RegBank = nullptr;
// Remember the size of the register for reuse for copy-like instructions.
unsigned RegSize = 0;
for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
const MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
// The register bank of Reg is just a side effect of the current
// excution and in particular, there is no reason to believe this
// is the best default mapping for the current instruction. Keep
// it as an alternative register bank if we cannot figure out
// something.
const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
// For copy-like instruction, we want to reuse the register bank
// that is already set on Reg, if any, since those instructions do
// not have any constraints.
const RegisterBank *CurRegBank = isCopyLike ? AltRegBank : nullptr;
if (!CurRegBank) {
// If this is a target specific instruction, we can deduce
// the register bank from the encoding constraints.
CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
if (!CurRegBank) {
// All our attempts failed, give up.
CompleteMapping = false;
if (!isCopyLike)
// MI does not carry enough information to guess the mapping.
return InstructionMapping();
// For copies, we want to keep interating to find a register
// bank for the other operands if we did not find one yet.
if (RegBank)
break;
continue;
}
}
RegBank = CurRegBank;
RegSize = getSizeInBits(Reg, MRI, TRI);
Mapping.setOperandMapping(OpIdx, RegSize, *CurRegBank);
}
if (CompleteMapping)
return Mapping;
assert(isCopyLike && "We should have bailed on non-copies at this point");
// For copy like instruction, if none of the operand has a register
// bank avialable, there is nothing we can propagate.
if (!RegBank)
return InstructionMapping();
// This is a copy-like instruction.
// Propagate RegBank to all operands that do not have a
// mapping yet.
for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
const MachineOperand &MO = MI.getOperand(OpIdx);
// Don't assign a mapping for non-reg operands.
if (!MO.isReg())
continue;
// If a mapping already exists, do not touch it.
if (!static_cast<const InstructionMapping *>(&Mapping)
->getOperandMapping(OpIdx)
.BreakDown.empty())
continue;
Mapping.setOperandMapping(OpIdx, RegSize, *RegBank);
}
return Mapping;
}
RegisterBankInfo::InstructionMapping
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
llvm_unreachable("The target must implement this");
}
RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
InstructionMappings PossibleMappings;
// Put the default mapping first.
PossibleMappings.push_back(getInstrMapping(MI));
// Then the alternative mapping, if any.
InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
for (InstructionMapping &AltMapping : AltMappings)
PossibleMappings.emplace_back(std::move(AltMapping));
#ifndef NDEBUG
for (const InstructionMapping &Mapping : PossibleMappings)
assert(Mapping.verify(MI) && "Mapping is invalid");
#endif
return PossibleMappings;
}
RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
// No alternative for MI.
return InstructionMappings();
}
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
MachineInstr &MI = OpdMapper.getMI();
DEBUG(dbgs() << "Applying default-like mapping\n");
for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
++OpIdx) {
DEBUG(dbgs() << "OpIdx " << OpIdx);
MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
DEBUG(dbgs() << " is not a register, nothing to be done\n");
continue;
}
assert(
OpdMapper.getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() ==
1 &&
"This mapping is too complex for this function");
iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
OpdMapper.getVRegs(OpIdx);
if (NewRegs.begin() == NewRegs.end()) {
DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
continue;
}
DEBUG(dbgs() << " changed, replace " << MO.getReg());
MO.setReg(*NewRegs.begin());
DEBUG(dbgs() << " with " << MO.getReg());
}
}
unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) {
const TargetRegisterClass *RC = nullptr;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// The size is not directly available for physical registers.
// Instead, we need to access a register class that contains Reg and
// get the size of that register class.
RC = TRI.getMinimalPhysRegClass(Reg);
} else {
LLT Ty = MRI.getType(Reg);
unsigned RegSize = Ty.isSized() ? Ty.getSizeInBits() : 0;
// If Reg is not a generic register, query the register class to
// get its size.
if (RegSize)
return RegSize;
// Since Reg is not a generic register, it must have a register class.
RC = MRI.getRegClass(Reg);
}
assert(RC && "Unable to deduce the register class");
return RC->getSize() * 8;
}
//------------------------------------------------------------------------------
// Helper classes implementation.
//------------------------------------------------------------------------------
void RegisterBankInfo::PartialMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
bool RegisterBankInfo::PartialMapping::verify() const {
assert(RegBank && "Register bank not set");
assert(Length && "Empty mapping");
assert((StartIdx < getHighBitIdx()) && "Overflow, switch to APInt?");
// Check if the minimum width fits into RegBank.
assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
return true;
}
void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
if (RegBank)
OS << *RegBank;
else
OS << "nullptr";
}
bool RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const {
assert(!BreakDown.empty() && "Value mapped nowhere?!");
unsigned OrigValueBitWidth = 0;
for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
// Check that each register bank is big enough to hold the partial value:
// this check is done by PartialMapping::verify
assert(PartMap.verify() && "Partial mapping is invalid");
// The original value should completely be mapped.
// Thus the maximum accessed index + 1 is the size of the original value.
OrigValueBitWidth =
std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
}
assert(OrigValueBitWidth == ExpectedBitWidth && "BitWidth does not match");
APInt ValueMask(OrigValueBitWidth, 0);
for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
// Check that the union of the partial mappings covers the whole value,
// without overlaps.
// The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
PartMap.getHighBitIdx() + 1);
ValueMask ^= PartMapMask;
assert((ValueMask & PartMapMask) == PartMapMask &&
"Some partial mappings overlap");
}
assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
return true;
}
void RegisterBankInfo::ValueMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
OS << "#BreakDown: " << BreakDown.size() << " ";
bool IsFirst = true;
for (const PartialMapping &PartMap : BreakDown) {
if (!IsFirst)
OS << ", ";
OS << '[' << PartMap << ']';
IsFirst = false;
}
}
void RegisterBankInfo::InstructionMapping::setOperandMapping(
unsigned OpIdx, unsigned MaskSize, const RegisterBank &RegBank) {
// Build the value mapping.
assert(MaskSize <= RegBank.getSize() && "Register bank is too small");
// Create the mapping object.
getOperandMapping(OpIdx).BreakDown.push_back(
PartialMapping(0, MaskSize, RegBank));
}
bool RegisterBankInfo::InstructionMapping::verify(
const MachineInstr &MI) const {
// Check that all the register operands are properly mapped.
// Check the constructor invariant.
assert(NumOperands == MI.getNumOperands() &&
"NumOperands must match, see constructor");
assert(MI.getParent() && MI.getParent()->getParent() &&
"MI must be connected to a MachineFunction");
const MachineFunction &MF = *MI.getParent()->getParent();
(void)MF;
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
const MachineOperand &MO = MI.getOperand(Idx);
const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
(void)MOMapping;
if (!MO.isReg()) {
assert(MOMapping.BreakDown.empty() &&
"We should not care about non-reg mapping");
continue;
}
unsigned Reg = MO.getReg();
if (!Reg)
continue;
// Register size in bits.
// This size must match what the mapping expects.
assert(MOMapping.verify(getSizeInBits(
Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
"Value mapping is invalid");
}
return true;
}
void RegisterBankInfo::InstructionMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
const ValueMapping &ValMapping = getOperandMapping(OpIdx);
if (OpIdx)
OS << ", ";
OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
}
}
const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
RegisterBankInfo::OperandsMapper::OperandsMapper(
MachineInstr &MI, const InstructionMapping &InstrMapping,
MachineRegisterInfo &MRI)
: MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
unsigned NumOpds = MI.getNumOperands();
OpToNewVRegIdx.reset(new int[NumOpds]);
std::fill(&OpToNewVRegIdx[0], &OpToNewVRegIdx[NumOpds],
OperandsMapper::DontKnowIdx);
assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
}
iterator_range<SmallVectorImpl<unsigned>::iterator>
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
unsigned NumPartialVal =
getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx) {
// This is the first time we try to access OpIdx.
// Create the cells that will hold all the partial values at the
// end of the list of NewVReg.
StartIdx = NewVRegs.size();
OpToNewVRegIdx[OpIdx] = StartIdx;
for (unsigned i = 0; i < NumPartialVal; ++i)
NewVRegs.push_back(0);
}
SmallVectorImpl<unsigned>::iterator End =
getNewVRegsEnd(StartIdx, NumPartialVal);
return make_range(&NewVRegs[StartIdx], End);
}
SmallVectorImpl<unsigned>::const_iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
unsigned NumVal) const {
return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
}
SmallVectorImpl<unsigned>::iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
unsigned NumVal) {
assert((NewVRegs.size() == StartIdx + NumVal ||
NewVRegs.size() > StartIdx + NumVal) &&
"NewVRegs too small to contain all the partial mapping");
return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
: &NewVRegs[StartIdx + NumVal];
}
void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
getVRegsMem(OpIdx);
const SmallVectorImpl<PartialMapping> &PartMapList =
getInstrMapping().getOperandMapping(OpIdx).BreakDown;
SmallVectorImpl<PartialMapping>::const_iterator PartMap = PartMapList.begin();
for (unsigned &NewVReg : NewVRegsForOpIdx) {
assert(PartMap != PartMapList.end() && "Out-of-bound access");
assert(NewVReg == 0 && "Register has already been created");
NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
MRI.setRegBank(NewVReg, *PartMap->RegBank);
++PartMap;
}
}
void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
unsigned PartialMapIdx,
unsigned NewVReg) {
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
assert(getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
PartialMapIdx &&
"Out-of-bound access for partial mapping");
// Make sure the memory is initialized for that operand.
(void)getVRegsMem(OpIdx);
assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
"This value is already set");
NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
}
iterator_range<SmallVectorImpl<unsigned>::const_iterator>
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
bool ForDebug) const {
(void)ForDebug;
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx)
return make_range(NewVRegs.end(), NewVRegs.end());
unsigned PartMapSize =
getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
SmallVectorImpl<unsigned>::const_iterator End =
getNewVRegsEnd(StartIdx, PartMapSize);
iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
make_range(&NewVRegs[StartIdx], End);
#ifndef NDEBUG
for (unsigned VReg : Res)
assert((VReg || ForDebug) && "Some registers are uninitialized");
#endif
return Res;
}
void RegisterBankInfo::OperandsMapper::dump() const {
print(dbgs(), true);
dbgs() << '\n';
}
void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
bool ForDebug) const {
unsigned NumOpds = getMI().getNumOperands();
if (ForDebug) {
OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
// Print out the internal state of the index table.
OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
bool IsFirst = true;
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
if (!IsFirst)
OS << ", ";
OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
IsFirst = false;
}
}
OS << '\n';
} else
OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
OS << "Operand Mapping: ";
// If we have a function, we can pretty print the name of the registers.
// Otherwise we will print the raw numbers.
const TargetRegisterInfo *TRI =
getMI().getParent() && getMI().getParent()->getParent()
? getMI().getParent()->getParent()->getSubtarget().getRegisterInfo()
: nullptr;
bool IsFirst = true;
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
if (OpToNewVRegIdx[Idx] == DontKnowIdx)
continue;
if (!IsFirst)
OS << ", ";
IsFirst = false;
OS << '(' << PrintReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
bool IsFirstNewVReg = true;
for (unsigned VReg : getVRegs(Idx)) {
if (!IsFirstNewVReg)
OS << ", ";
IsFirstNewVReg = false;
OS << PrintReg(VReg, TRI);
}
OS << "])";
}
}
|