summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
blob: 8a6e1cb36232e594914d72ad21a4047736b80f04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegBankSelect class.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetSubtargetInfo.h"

#define DEBUG_TYPE "regbankselect"

using namespace llvm;

char RegBankSelect::ID = 0;
INITIALIZE_PASS(RegBankSelect, "regbankselect",
                "Assign register bank of generic virtual registers",
                false, false);

RegBankSelect::RegBankSelect()
    : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr) {
  initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
}

void RegBankSelect::init(MachineFunction &MF) {
  RBI = MF.getSubtarget().getRegBankInfo();
  assert(RBI && "Cannot work without RegisterBankInfo");
  MRI = &MF.getRegInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MIRBuilder.setMF(MF);
}

bool RegBankSelect::assignmentMatch(
    unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping) const {
  // Each part of a break down needs to end up in a different register.
  // In other word, Reg assignement does not match.
  if (ValMapping.BreakDown.size() > 1)
    return false;

  const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
  const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
  DEBUG(dbgs() << "Does assignment already match: ";
        if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
        dbgs() << " against ";
        assert(DesiredRegBrank && "The mapping must be valid");
        dbgs() << *DesiredRegBrank << '\n';);
  return CurRegBank == DesiredRegBrank;
}

unsigned
RegBankSelect::repairReg(unsigned Reg,
                         const RegisterBankInfo::ValueMapping &ValMapping,
                         MachineInstr &DefUseMI, bool IsDef) {
  assert(ValMapping.BreakDown.size() == 1 &&
         "Support for complex break down not supported yet");
  const RegisterBankInfo::PartialMapping &PartialMap = ValMapping.BreakDown[0];
  assert(PartialMap.Length ==
             (TargetRegisterInfo::isPhysicalRegister(Reg)
                  ? TRI->getMinimalPhysRegClass(Reg)->getSize() * 8
                  : MRI->getSize(Reg)) &&
         "Repairing other than copy not implemented yet");
  // If the MIRBuilder is configured to insert somewhere else than
  // DefUseMI, we may not use this function like was it first
  // internded (local repairing), so make sure we pay attention before
  // we remove the assert.
  // In particular, it is likely that we will have to properly save
  // the insertion point of the MIRBuilder and restore it at the end
  // of this method.
  assert(&DefUseMI == &(*MIRBuilder.getInsertPt()) &&
         "Need to save and restore the insertion point");
  // For use, we will add a copy just in front of the instruction.
  // For def, we will add a copy just after the instruction.
  // In either case, the insertion point must be valid. In particular,
  // make sure we do not insert in the middle of terminators or phis.
  bool Before = !IsDef;
  setSafeInsertionPoint(DefUseMI, Before);
  if (DefUseMI.isTerminator() && Before) {
    // Check that the insertion point does not happen
    // before the definition of Reg.
    // This can happen if Reg is defined by a terminator
    // and used by another one.
    // In that case the repairing code is actually more involved
    // because we have to split the block.

    // Assert that this is not a physical register.
    // The target independent code does not insert physical registers
    // on terminators, so if we end up in this situation, this is
    // likely a bug in the target.
    assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
           "Check for physical register not implemented");
    const MachineInstr *RegDef = MRI->getVRegDef(Reg);
    assert(RegDef && "Reg has more than one definition?");
    // Assert to make the code more readable; Reg is used by DefUseMI, i.e.,
    // (Before == !IsDef == true), so DefUseMI != RegDef otherwise we have
    // a use (that is not a PHI) that is not dominated by its def.
    assert(&DefUseMI != RegDef && "Def does not dominate all of its uses");
    if (RegDef->isTerminator() && RegDef->getParent() == DefUseMI.getParent())
      // By construction, the repairing should happen between two
      // terminators: RegDef and DefUseMI.
      // This is not implemented.
      report_fatal_error("Repairing between terminators not implemented yet");
  }

  // Create a new temporary to hold the repaired value.
  unsigned NewReg = MRI->createGenericVirtualRegister(PartialMap.Length);
  // Set the registers for the source and destination of the copy.
  unsigned Src = Reg, Dst = NewReg;
  // If this is a definition that we repair, the copy will be
  // inverted.
  if (IsDef)
    std::swap(Src, Dst);
  (void)MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src);

  DEBUG(dbgs() << "Repair: " << PrintReg(Reg) << " with: "
        << PrintReg(NewReg) << '\n');

  // Restore the insertion point of the MIRBuilder.
  MIRBuilder.setInstr(DefUseMI, Before);
  return NewReg;
}

void RegBankSelect::setSafeInsertionPoint(MachineInstr &InsertPt, bool Before) {
  // Check that we are not looking to insert before a phi.
  // Indeed, we would need more information on what to do.
  // By default that should be all the predecessors, but this is
  // probably not what we want in general.
  assert((!Before || !InsertPt.isPHI()) &&
         "Insertion before phis not implemented");
  // The same kind of observation hold for terminators if we try to
  // insert after them.
  assert((Before || !InsertPt.isTerminator()) &&
         "Insertion after terminatos not implemented");
  if (InsertPt.isPHI()) {
    assert(!Before && "Not supported!!");
    MachineBasicBlock *MBB = InsertPt.getParent();
    assert(MBB && "Insertion point is not in a basic block");
    MachineBasicBlock::iterator FirstNonPHIPt = MBB->getFirstNonPHI();
    if (FirstNonPHIPt == MBB->end()) {
      // If there is not any non-phi instruction, insert at the end of MBB.
      MIRBuilder.setMBB(*MBB, /*Beginning*/ false);
      return;
    }
    // The insertion point before the first non-phi instruction.
    MIRBuilder.setInstr(*FirstNonPHIPt, /*Before*/ true);
    return;
  }
  if (InsertPt.isTerminator()) {
    MachineBasicBlock *MBB = InsertPt.getParent();
    assert(MBB && "Insertion point is not in a basic block");
    MIRBuilder.setInstr(*MBB->getFirstTerminator(), /*Before*/ true);
    return;
  }
  MIRBuilder.setInstr(InsertPt, /*Before*/ Before);
}

void RegBankSelect::assignInstr(MachineInstr &MI) {
  DEBUG(dbgs() << "Assign: " << MI);
  const RegisterBankInfo::InstructionMapping DefaultMapping =
      RBI->getInstrMapping(MI);
  // Make sure the mapping is valid for MI.
  assert(DefaultMapping.verify(MI) && "Invalid instruction mapping");

  DEBUG(dbgs() << "Mapping: " << DefaultMapping << '\n');

  // Set the insertion point before MI.
  // This is where we are going to insert the repairing code if any.
  MIRBuilder.setInstr(MI, /*Before*/ true);

  // For now, do not look for alternative mappings.
  // Alternative mapping may require to rewrite MI and we do not support
  // that yet.
  // Walk the operands and assign then to the chosen mapping, possibly with
  // the insertion of repair code for uses.
  for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
       ++OpIdx) {
    MachineOperand &MO = MI.getOperand(OpIdx);
    // Nothing to be done for non-register operands.
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;

    const RegisterBankInfo::ValueMapping &ValMapping =
        DefaultMapping.getOperandMapping(OpIdx);
    // If Reg is already properly mapped, move on.
    if (assignmentMatch(Reg, ValMapping))
      continue;

    // For uses, we may need to create a new temporary.
    // Indeed, if Reg is already assigned a register bank, at this
    // point, we know it is different from the one defined by the
    // chosen mapping, we need to adjust for that.
    // For definitions, changing the register bank will affect all
    // its uses, and in particular the ones we already visited.
    // Although this is correct, since with the RPO traversal of the
    // basic blocks the only uses that we already visisted for this
    // definition are PHIs (i.e., copies), this may not be the best
    // solution according to the cost model.
    // Therefore, create a new temporary for Reg.
    assert(ValMapping.BreakDown.size() == 1 &&
           "Support for complex break down not supported yet");
    if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
        MRI->getRegClassOrRegBank(Reg)) {
      if (!MO.isDef() && MI.isPHI()) {
        // Phis are already copies, so there is nothing to repair.
        // Note: This will not hold when we support break downs with
        // more than one segment.
        DEBUG(dbgs() << "Skip PHI use\n");
        continue;
      }
      // If MO is a definition, since repairing after a terminator is
      // painful, do not repair. Indeed, this is probably not worse
      // saving the move in the PHIs that will get reassigned.
      if (!MO.isDef() || !MI.isTerminator())
        Reg = repairReg(Reg, ValMapping, MI, MO.isDef());
    }

    // If we end up here, MO should be free of encoding constraints,
    // i.e., we do not have to constrained the RegBank of Reg to
    // the requirement of the operands.
    // If that is not the case, this means the code was broken before
    // hands because we should have found that the assignment match.
    // This will not hold when we will consider alternative mappings.
    DEBUG(dbgs() << "Assign: " << *ValMapping.BreakDown[0].RegBank << " to "
                 << PrintReg(Reg) << '\n');

    MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
    MO.setReg(Reg);
  }
  DEBUG(dbgs() << "Assigned: " << MI);
}

bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
  init(MF);
  // Walk the function and assign register banks to all operands.
  // Use a RPOT to make sure all registers are assigned before we choose
  // the best mapping of the current instruction.
  ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
  for (MachineBasicBlock *MBB : RPOT)
    for (MachineInstr &MI : *MBB)
      assignInstr(MI);
  return false;
}
OpenPOWER on IntegriCloud