summaryrefslogtreecommitdiffstats
path: root/llvm/include/llvm/ADT/PriorityWorklist.h
blob: 96d22c87557e6a0bce8fe3759a106565485d3d70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//===- PriorityWorklist.h - Worklist with insertion priority ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file provides a priority worklist. See the class comments for details.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_PRIORITYWORKLIST_H
#define LLVM_ADT_PRIORITYWORKLIST_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <vector>

namespace llvm {

/// A FILO worklist that prioritizes on re-insertion without duplication.
///
/// This is very similar to a \c SetVector with the primary difference that
/// while re-insertion does not create a duplicate, it does adjust the
/// visitation order to respect the last insertion point. This can be useful
/// when the visit order needs to be prioritized based on insertion point
/// without actually having duplicate visits.
///
/// Note that this doesn't prevent re-insertion of elements which have been
/// visited -- if you need to break cycles, a set will still be necessary.
///
/// The type \c T must be default constructable to a null value that will be
/// ignored. It is an error to insert such a value, and popping elements will
/// never produce such a value. It is expected to be used with common nullable
/// types like pointers or optionals.
///
/// Internally this uses a vector to store the worklist and a map to identify
/// existing elements in the worklist. Both of these may be customized, but the
/// map must support the basic DenseMap API for mapping from a T to an integer
/// index into the vector.
///
/// A partial specialization is provided to automatically select a SmallVector
/// and a SmallDenseMap if custom data structures are not provided.
template <typename T, typename VectorT = std::vector<T>,
          typename MapT = DenseMap<T, ptrdiff_t>>
class PriorityWorklist {
public:
  using value_type = T;
  using key_type = T;
  using reference = T&;
  using const_reference = const T&;
  using size_type = typename MapT::size_type;

  /// Construct an empty PriorityWorklist
  PriorityWorklist() = default;

  /// Determine if the PriorityWorklist is empty or not.
  bool empty() const {
    return V.empty();
  }

  /// Returns the number of elements in the worklist.
  size_type size() const {
    return M.size();
  }

  /// Count the number of elements of a given key in the PriorityWorklist.
  /// \returns 0 if the element is not in the PriorityWorklist, 1 if it is.
  size_type count(const key_type &key) const {
    return M.count(key);
  }

  /// Return the last element of the PriorityWorklist.
  const T &back() const {
    assert(!empty() && "Cannot call back() on empty PriorityWorklist!");
    return V.back();
  }

  /// Insert a new element into the PriorityWorklist.
  /// \returns true if the element was inserted into the PriorityWorklist.
  bool insert(const T &X) {
    assert(X != T() && "Cannot insert a null (default constructed) value!");
    auto InsertResult = M.insert({X, V.size()});
    if (InsertResult.second) {
      // Fresh value, just append it to the vector.
      V.push_back(X);
      return true;
    }

    auto &Index = InsertResult.first->second;
    assert(V[Index] == X && "Value not actually at index in map!");
    if (Index != (ptrdiff_t)(V.size() - 1)) {
      // If the element isn't at the back, null it out and append a fresh one.
      V[Index] = T();
      Index = (ptrdiff_t)V.size();
      V.push_back(X);
    }
    return false;
  }

  /// Insert a sequence of new elements into the PriorityWorklist.
  template <typename SequenceT>
  typename std::enable_if<!std::is_convertible<SequenceT, T>::value>::type
  insert(SequenceT &&Input) {
    if (std::begin(Input) == std::end(Input))
      // Nothing to do for an empty input sequence.
      return;

    // First pull the input sequence into the vector as a bulk append
    // operation.
    ptrdiff_t StartIndex = V.size();
    V.insert(V.end(), std::begin(Input), std::end(Input));
    // Now walk backwards fixing up the index map and deleting any duplicates.
    for (ptrdiff_t i = V.size() - 1; i >= StartIndex; --i) {
      auto InsertResult = M.insert({V[i], i});
      if (InsertResult.second)
        continue;

      // If the existing index is before this insert's start, nuke that one and
      // move it up.
      ptrdiff_t &Index = InsertResult.first->second;
      if (Index < StartIndex) {
        V[Index] = T();
        Index = i;
        continue;
      }

      // Otherwise the existing one comes first so just clear out the value in
      // this slot.
      V[i] = T();
    }
  }

  /// Remove the last element of the PriorityWorklist.
  void pop_back() {
    assert(!empty() && "Cannot remove an element when empty!");
    assert(back() != T() && "Cannot have a null element at the back!");
    M.erase(back());
    do {
      V.pop_back();
    } while (!V.empty() && V.back() == T());
  }

  LLVM_NODISCARD T pop_back_val() {
    T Ret = back();
    pop_back();
    return Ret;
  }

  /// Erase an item from the worklist.
  ///
  /// Note that this is constant time due to the nature of the worklist implementation.
  bool erase(const T& X) {
    auto I = M.find(X);
    if (I == M.end())
      return false;

    assert(V[I->second] == X && "Value not actually at index in map!");
    if (I->second == (ptrdiff_t)(V.size() - 1)) {
      do {
        V.pop_back();
      } while (!V.empty() && V.back() == T());
    } else {
      V[I->second] = T();
    }
    M.erase(I);
    return true;
  }

  /// Erase items from the set vector based on a predicate function.
  ///
  /// This is intended to be equivalent to the following code, if we could
  /// write it:
  ///
  /// \code
  ///   V.erase(remove_if(V, P), V.end());
  /// \endcode
  ///
  /// However, PriorityWorklist doesn't expose non-const iterators, making any
  /// algorithm like remove_if impossible to use.
  ///
  /// \returns true if any element is removed.
  template <typename UnaryPredicate>
  bool erase_if(UnaryPredicate P) {
    typename VectorT::iterator E =
        remove_if(V, TestAndEraseFromMap<UnaryPredicate>(P, M));
    if (E == V.end())
      return false;
    for (auto I = V.begin(); I != E; ++I)
      if (*I != T())
        M[*I] = I - V.begin();
    V.erase(E, V.end());
    return true;
  }

  /// Reverse the items in the PriorityWorklist.
  ///
  /// This does an in-place reversal. Other kinds of reverse aren't easy to
  /// support in the face of the worklist semantics.

  /// Completely clear the PriorityWorklist
  void clear() {
    M.clear();
    V.clear();
  }

private:
  /// A wrapper predicate designed for use with std::remove_if.
  ///
  /// This predicate wraps a predicate suitable for use with std::remove_if to
  /// call M.erase(x) on each element which is slated for removal. This just
  /// allows the predicate to be move only which we can't do with lambdas
  /// today.
  template <typename UnaryPredicateT>
  class TestAndEraseFromMap {
    UnaryPredicateT P;
    MapT &M;

  public:
    TestAndEraseFromMap(UnaryPredicateT P, MapT &M)
        : P(std::move(P)), M(M) {}

    bool operator()(const T &Arg) {
      if (Arg == T())
        // Skip null values in the PriorityWorklist.
        return false;

      if (P(Arg)) {
        M.erase(Arg);
        return true;
      }
      return false;
    }
  };

  /// The map from value to index in the vector.
  MapT M;

  /// The vector of elements in insertion order.
  VectorT V;
};

/// A version of \c PriorityWorklist that selects small size optimized data
/// structures for the vector and map.
template <typename T, unsigned N>
class SmallPriorityWorklist
    : public PriorityWorklist<T, SmallVector<T, N>,
                              SmallDenseMap<T, ptrdiff_t>> {
public:
  SmallPriorityWorklist() = default;
};

} // end namespace llvm

#endif // LLVM_ADT_PRIORITYWORKLIST_H
OpenPOWER on IntegriCloud