1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
|
//===-- DNBArchImplI386.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__i386__) || defined (__x86_64__)
#include <sys/cdefs.h>
#include "MacOSX/i386/DNBArchImplI386.h"
#include "DNBLog.h"
#include "MachThread.h"
#include "MachProcess.h"
enum
{
gpr_eax = 0,
gpr_ebx = 1,
gpr_ecx = 2,
gpr_edx = 3,
gpr_edi = 4,
gpr_esi = 5,
gpr_ebp = 6,
gpr_esp = 7,
gpr_ss = 8,
gpr_eflags = 9,
gpr_eip = 10,
gpr_cs = 11,
gpr_ds = 12,
gpr_es = 13,
gpr_fs = 14,
gpr_gs = 15,
k_num_gpr_regs
};
enum {
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
k_num_fpu_regs,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_exc_regs,
};
enum
{
gcc_eax = 0,
gcc_ecx,
gcc_edx,
gcc_ebx,
gcc_ebp,
gcc_esp,
gcc_esi,
gcc_edi,
gcc_eip,
gcc_eflags
};
enum
{
dwarf_eax = 0,
dwarf_ecx,
dwarf_edx,
dwarf_ebx,
dwarf_esp,
dwarf_ebp,
dwarf_esi,
dwarf_edi,
dwarf_eip,
dwarf_eflags,
dwarf_stmm0 = 11,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_xmm0 = 21,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7
};
enum
{
gdb_eax = 0,
gdb_ecx = 1,
gdb_edx = 2,
gdb_ebx = 3,
gdb_esp = 4,
gdb_ebp = 5,
gdb_esi = 6,
gdb_edi = 7,
gdb_eip = 8,
gdb_eflags = 9,
gdb_cs = 10,
gdb_ss = 11,
gdb_ds = 12,
gdb_es = 13,
gdb_fs = 14,
gdb_gs = 15,
gdb_stmm0 = 16,
gdb_stmm1 = 17,
gdb_stmm2 = 18,
gdb_stmm3 = 19,
gdb_stmm4 = 20,
gdb_stmm5 = 21,
gdb_stmm6 = 22,
gdb_stmm7 = 23,
gdb_fctrl = 24, gdb_fcw = gdb_fctrl,
gdb_fstat = 25, gdb_fsw = gdb_fstat,
gdb_ftag = 26, gdb_ftw = gdb_ftag,
gdb_fiseg = 27, gdb_fpu_cs = gdb_fiseg,
gdb_fioff = 28, gdb_ip = gdb_fioff,
gdb_foseg = 29, gdb_fpu_ds = gdb_foseg,
gdb_fooff = 30, gdb_dp = gdb_fooff,
gdb_fop = 31,
gdb_xmm0 = 32,
gdb_xmm1 = 33,
gdb_xmm2 = 34,
gdb_xmm3 = 35,
gdb_xmm4 = 36,
gdb_xmm5 = 37,
gdb_xmm6 = 38,
gdb_xmm7 = 39,
gdb_mxcsr = 40,
gdb_mm0 = 41,
gdb_mm1 = 42,
gdb_mm2 = 43,
gdb_mm3 = 44,
gdb_mm4 = 45,
gdb_mm5 = 46,
gdb_mm6 = 47,
gdb_mm7 = 48
};
uint64_t
DNBArchImplI386::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__eip;
return failValue;
}
kern_return_t
DNBArchImplI386::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__eip = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchImplI386::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__esp;
return failValue;
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
//#define SET_GPR(reg) m_state.context.gpr.__##reg = gpr_##reg
kern_return_t
DNBArchImplI386::GetGPRState(bool force)
{
if (force || m_state.GetError(e_regSetGPR, Read))
{
#if DEBUG_GPR_VALUES
SET_GPR(eax);
SET_GPR(ebx);
SET_GPR(ecx);
SET_GPR(edx);
SET_GPR(edi);
SET_GPR(esi);
SET_GPR(ebp);
SET_GPR(esp);
SET_GPR(ss);
SET_GPR(eflags);
SET_GPR(eip);
SET_GPR(cs);
SET_GPR(ds);
SET_GPR(es);
SET_GPR(fs);
SET_GPR(gs);
m_state.SetError(e_regSetGPR, Read, 0);
#else
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->ThreadID(), x86_THREAD_STATE32, (thread_state_t)&m_state.context.gpr, &count));
#endif
}
return m_state.GetError(e_regSetGPR, Read);
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_FPU_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplI386::GetFPUState(bool force)
{
if (force || m_state.GetError(e_regSetFPU, Read))
{
#if DEBUG_FPU_VALUES
m_state.context.fpu.__fpu_reserved[0] = -1;
m_state.context.fpu.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.__fpu_fsw) = 0x5678;
m_state.context.fpu.__fpu_ftw = 1;
m_state.context.fpu.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.__fpu_fop = 2;
m_state.context.fpu.__fpu_ip = 3;
m_state.context.fpu.__fpu_cs = 4;
m_state.context.fpu.__fpu_rsrv2 = 5;
m_state.context.fpu.__fpu_dp = 6;
m_state.context.fpu.__fpu_ds = 7;
m_state.context.fpu.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.__fpu_mxcsr = 8;
m_state.context.fpu.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.__fpu_xmm7.__xmm_reg[i] = '7';
}
for (i=0; i<sizeof(m_state.context.fpu.__fpu_rsrv4); ++i)
m_state.context.fpu.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.__fpu_reserved1 = -1;
m_state.SetError(e_regSetFPU, Read, 0);
#else
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), x86_FLOAT_STATE32, (thread_state_t)&m_state.context.fpu, &count));
#endif
}
return m_state.GetError(e_regSetFPU, Read);
}
kern_return_t
DNBArchImplI386::GetEXCState(bool force)
{
if (force || m_state.GetError(e_regSetEXC, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->ThreadID(), x86_EXCEPTION_STATE32, (thread_state_t)&m_state.context.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t
DNBArchImplI386::SetGPRState()
{
m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->ThreadID(), x86_THREAD_STATE32, (thread_state_t)&m_state.context.gpr, e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t
DNBArchImplI386::SetFPUState()
{
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), x86_FLOAT_STATE32, (thread_state_t)&m_state.context.fpu, e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPU, Write);
}
kern_return_t
DNBArchImplI386::SetEXCState()
{
m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->ThreadID(), x86_EXCEPTION_STATE32, (thread_state_t)&m_state.context.exc, e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
void
DNBArchImplI386::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
}
bool
DNBArchImplI386::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchImplI386::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
case EXC_BAD_ACCESS:
break;
case EXC_BAD_INSTRUCTION:
break;
case EXC_ARITHMETIC:
break;
case EXC_EMULATION:
break;
case EXC_SOFTWARE:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2)
{
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0)
{
pc -= 1;
// Check for a breakpoint at one byte prior to the current PC value
// since the PC will be just past the trap.
nub_break_t breakID = m_thread->Process()->Breakpoints().FindIDByAddress(pc);
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// Backup the PC for i386 since the trap was taken and the PC
// is at the address following the single byte trap instruction.
if (m_state.context.gpr.__eip > 0)
{
m_state.context.gpr.__eip = pc;
// Write the new PC back out
SetGPRState ();
}
}
return true;
}
}
break;
case EXC_SYSCALL:
break;
case EXC_MACH_SYSCALL:
break;
case EXC_RPC_ALERT:
break;
}
return false;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchImplI386::EnableHardwareSingleStep (bool enable)
{
if (GetGPRState(false) == KERN_SUCCESS)
{
const uint32_t trace_bit = 0x100u;
if (enable)
m_state.context.gpr.__eflags |= trace_bit;
else
m_state.context.gpr.__eflags &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information defintions
//----------------------------------------------------------------------
#define GPR_OFFSET(reg) (offsetof (DNBArchImplI386::GPR, __##reg))
#define FPU_OFFSET(reg) (offsetof (DNBArchImplI386::FPU, __fpu_##reg) + offsetof (DNBArchImplI386::Context, fpu))
#define EXC_OFFSET(reg) (offsetof (DNBArchImplI386::EXC, __##reg) + offsetof (DNBArchImplI386::Context, exc))
#define GPR_SIZE(reg) (sizeof(((DNBArchImplI386::GPR *)NULL)->__##reg))
#define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg))
#define FPU_SIZE_MMST(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__mmst_reg))
#define FPU_SIZE_XMM(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__xmm_reg))
#define EXC_SIZE(reg) (sizeof(((DNBArchImplI386::EXC *)NULL)->__##reg))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
// General purpose registers for 64 bit
const DNBRegisterInfo
DNBArchImplI386::g_gpr_registers[] =
{
{ e_regSetGPR, gpr_eax, "eax" , NULL , Uint, Hex, GPR_SIZE(eax), GPR_OFFSET(eax) , gcc_eax , dwarf_eax , -1 , gdb_eax },
{ e_regSetGPR, gpr_ebx, "ebx" , NULL , Uint, Hex, GPR_SIZE(ebx), GPR_OFFSET(ebx) , gcc_ebx , dwarf_ebx , -1 , gdb_ebx },
{ e_regSetGPR, gpr_ecx, "ecx" , NULL , Uint, Hex, GPR_SIZE(ecx), GPR_OFFSET(ecx) , gcc_ecx , dwarf_ecx , -1 , gdb_ecx },
{ e_regSetGPR, gpr_edx, "edx" , NULL , Uint, Hex, GPR_SIZE(edx), GPR_OFFSET(edx) , gcc_edx , dwarf_edx , -1 , gdb_edx },
{ e_regSetGPR, gpr_edi, "edi" , NULL , Uint, Hex, GPR_SIZE(edi), GPR_OFFSET(edi) , gcc_edi , dwarf_edi , -1 , gdb_edi },
{ e_regSetGPR, gpr_esi, "esi" , NULL , Uint, Hex, GPR_SIZE(esi), GPR_OFFSET(esi) , gcc_esi , dwarf_esi , -1 , gdb_esi },
{ e_regSetGPR, gpr_ebp, "ebp" , "fp" , Uint, Hex, GPR_SIZE(ebp), GPR_OFFSET(ebp) , gcc_ebp , dwarf_ebp , GENERIC_REGNUM_FP , gdb_ebp },
{ e_regSetGPR, gpr_esp, "esp" , "sp" , Uint, Hex, GPR_SIZE(esp), GPR_OFFSET(esp) , gcc_esp , dwarf_esp , GENERIC_REGNUM_SP , gdb_esp },
{ e_regSetGPR, gpr_ss, "ss" , NULL , Uint, Hex, GPR_SIZE(ss), GPR_OFFSET(ss) , -1 , -1 , -1 , gdb_ss },
{ e_regSetGPR, gpr_eflags, "eflags", "flags" , Uint, Hex, GPR_SIZE(eflags), GPR_OFFSET(eflags) , gcc_eflags, dwarf_eflags , GENERIC_REGNUM_FLAGS , gdb_eflags},
{ e_regSetGPR, gpr_eip, "eip" , "pc" , Uint, Hex, GPR_SIZE(eip), GPR_OFFSET(eip) , gcc_eip , dwarf_eip , GENERIC_REGNUM_PC , gdb_eip },
{ e_regSetGPR, gpr_cs, "cs" , NULL , Uint, Hex, GPR_SIZE(cs), GPR_OFFSET(cs) , -1 , -1 , -1 , gdb_cs },
{ e_regSetGPR, gpr_ds, "ds" , NULL , Uint, Hex, GPR_SIZE(ds), GPR_OFFSET(ds) , -1 , -1 , -1 , gdb_ds },
{ e_regSetGPR, gpr_es, "es" , NULL , Uint, Hex, GPR_SIZE(es), GPR_OFFSET(es) , -1 , -1 , -1 , gdb_es },
{ e_regSetGPR, gpr_fs, "fs" , NULL , Uint, Hex, GPR_SIZE(fs), GPR_OFFSET(fs) , -1 , -1 , -1 , gdb_fs },
{ e_regSetGPR, gpr_gs, "gs" , NULL , Uint, Hex, GPR_SIZE(gs), GPR_OFFSET(gs) , -1 , -1 , -1 , gdb_gs }
};
const DNBRegisterInfo
DNBArchImplI386::g_fpu_registers[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , FPU_OFFSET(fcw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , FPU_OFFSET(fsw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , FPU_OFFSET(ftw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , FPU_OFFSET(fop) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , FPU_OFFSET(ip) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , FPU_OFFSET(cs) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , FPU_OFFSET(dp) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , FPU_OFFSET(ds) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , FPU_OFFSET(mxcsr) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), -1, dwarf_stmm0, -1, gdb_stmm0 },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), -1, dwarf_stmm1, -1, gdb_stmm1 },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), -1, dwarf_stmm2, -1, gdb_stmm2 },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), -1, dwarf_stmm3, -1, gdb_stmm3 },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), -1, dwarf_stmm4, -1, gdb_stmm4 },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), -1, dwarf_stmm5, -1, gdb_stmm5 },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), -1, dwarf_stmm6, -1, gdb_stmm6 },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), -1, dwarf_stmm7, -1, gdb_stmm7 },
{ e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0), FPU_OFFSET(xmm0), -1, dwarf_xmm0, -1, gdb_xmm0 },
{ e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1), FPU_OFFSET(xmm1), -1, dwarf_xmm1, -1, gdb_xmm1 },
{ e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2), FPU_OFFSET(xmm2), -1, dwarf_xmm2, -1, gdb_xmm2 },
{ e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3), FPU_OFFSET(xmm3), -1, dwarf_xmm3, -1, gdb_xmm3 },
{ e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4), FPU_OFFSET(xmm4), -1, dwarf_xmm4, -1, gdb_xmm4 },
{ e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5), FPU_OFFSET(xmm5), -1, dwarf_xmm5, -1, gdb_xmm5 },
{ e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6), FPU_OFFSET(xmm6), -1, dwarf_xmm6, -1, gdb_xmm6 },
{ e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7), FPU_OFFSET(xmm7), -1, dwarf_xmm7, -1, gdb_xmm7 }
};
const DNBRegisterInfo
DNBArchImplI386::g_exc_registers[] =
{
{ e_regSetEXC, exc_trapno, "trapno" , NULL, Uint, Hex, EXC_SIZE (trapno) , EXC_OFFSET (trapno) , -1, -1, -1, -1 },
{ e_regSetEXC, exc_err, "err" , NULL, Uint, Hex, EXC_SIZE (err) , EXC_OFFSET (err) , -1, -1, -1, -1 },
{ e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr) , -1, -1, -1, -1 }
};
// Number of registers in each register set
const size_t DNBArchImplI386::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers = sizeof(g_fpu_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_all_registers = k_num_gpr_registers + k_num_fpu_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchImplI386::g_reg_sets[] =
{
{ "i386 Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers, k_num_fpu_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchImplI386::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
DNBArchProtocol *
DNBArchImplI386::Create (MachThread *thread)
{
return new DNBArchImplI386 (thread);
}
const uint8_t * const
DNBArchImplI386::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
static const uint8_t g_breakpoint_opcode[] = { 0xCC };
if (byte_size == 1)
return g_breakpoint_opcode;
return NULL;
}
const DNBRegisterSetInfo *
DNBArchImplI386::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
void
DNBArchImplI386::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_I386,
DNBArchImplI386::Create,
DNBArchImplI386::GetRegisterSetInfo,
DNBArchImplI386::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
bool
DNBArchImplI386::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = ((uint32_t*)(&m_state.context.gpr))[reg];
return true;
}
break;
case e_regSetFPU:
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.__fpu_mxcsrmask; return true;
case fpu_stmm0: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm0.__mmst_reg, 10); return true;
case fpu_stmm1: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm1.__mmst_reg, 10); return true;
case fpu_stmm2: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm2.__mmst_reg, 10); return true;
case fpu_stmm3: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm3.__mmst_reg, 10); return true;
case fpu_stmm4: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm4.__mmst_reg, 10); return true;
case fpu_stmm5: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm5.__mmst_reg, 10); return true;
case fpu_stmm6: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm6.__mmst_reg, 10); return true;
case fpu_stmm7: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_stmm7.__mmst_reg, 10); return true;
case fpu_xmm0: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm0.__xmm_reg, 16); return true;
case fpu_xmm1: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm1.__xmm_reg, 16); return true;
case fpu_xmm2: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm2.__xmm_reg, 16); return true;
case fpu_xmm3: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm3.__xmm_reg, 16); return true;
case fpu_xmm4: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm4.__xmm_reg, 16); return true;
case fpu_xmm5: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm5.__xmm_reg, 16); return true;
case fpu_xmm6: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm6.__xmm_reg, 16); return true;
case fpu_xmm7: memcpy(&value->value.uint8, m_state.context.fpu.__fpu_xmm7.__xmm_reg, 16); return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.context.exc.__trapno)[reg];
return true;
}
break;
}
}
return false;
}
bool
DNBArchImplI386::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
((uint32_t*)(&m_state.context.gpr))[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetFPU:
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0: memcpy (m_state.context.fpu.__fpu_stmm0.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm1: memcpy (m_state.context.fpu.__fpu_stmm1.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm2: memcpy (m_state.context.fpu.__fpu_stmm2.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm3: memcpy (m_state.context.fpu.__fpu_stmm3.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm4: memcpy (m_state.context.fpu.__fpu_stmm4.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm5: memcpy (m_state.context.fpu.__fpu_stmm5.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm6: memcpy (m_state.context.fpu.__fpu_stmm6.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm7: memcpy (m_state.context.fpu.__fpu_stmm7.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_xmm0: memcpy(m_state.context.fpu.__fpu_xmm0.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm1: memcpy(m_state.context.fpu.__fpu_xmm1.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm2: memcpy(m_state.context.fpu.__fpu_xmm2.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm3: memcpy(m_state.context.fpu.__fpu_xmm3.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm4: memcpy(m_state.context.fpu.__fpu_xmm4.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm5: memcpy(m_state.context.fpu.__fpu_xmm5.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm6: memcpy(m_state.context.fpu.__fpu_xmm6.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm7: memcpy(m_state.context.fpu.__fpu_xmm7.__xmm_reg, &value->value.uint8, 16); success = true; break;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
(&m_state.context.exc.__trapno)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
nub_size_t
DNBArchImplI386::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetFPUState(force) | GetEXCState(force))
return 0;
::memcpy (buf, &m_state.context, size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchImplI386::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
::memcpy (&m_state.context, buf, size);
SetGPRState();
SetFPUState();
SetEXCState();
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
return size;
}
kern_return_t
DNBArchImplI386::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetFPU: return GetFPUState(force);
case e_regSetEXC: return GetEXCState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchImplI386::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
if (RegisterSetStateIsValid(set))
{
switch (set)
{
case e_regSetALL: return SetGPRState() | SetFPUState() | SetEXCState();
case e_regSetGPR: return SetGPRState();
case e_regSetFPU: return SetFPUState();
case e_regSetEXC: return SetEXCState();
default: break;
}
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchImplI386::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
#endif // #if defined (__i386__)
|