1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
|
//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <list>
#include "lldb/Core/Log.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
m_objfile (objfile),
m_section_sp (section_sp),
m_reg_kind (reg_kind), // The flavor of registers that the CFI data uses (enum RegisterKind)
m_flags (),
m_cie_map (),
m_cfi_data (),
m_cfi_data_initialized (false),
m_fde_index (),
m_fde_index_initialized (false),
m_is_eh_frame (is_eh_frame)
{
}
DWARFCallFrameInfo::~DWARFCallFrameInfo()
{
}
bool
DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
{
FDEEntry fde_entry;
if (GetFDEEntryByAddress (addr, fde_entry) == false)
return false;
range = fde_entry.bounds;
return true;
}
bool
DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
{
FDEEntry fde_entry;
if (GetFDEEntryByAddress (addr, fde_entry) == false)
return false;
return FDEToUnwindPlan (fde_entry.offset, addr, unwind_plan);
}
bool
DWARFCallFrameInfo::GetFDEEntryByAddress (Address addr, FDEEntry& fde_entry)
{
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return false;
GetFDEIndex();
struct FDEEntry searchfde;
searchfde.bounds = AddressRange (addr, 1);
std::vector<FDEEntry>::const_iterator idx;
if (m_fde_index.size() == 0)
return false;
idx = std::lower_bound (m_fde_index.begin(), m_fde_index.end(), searchfde);
if (idx == m_fde_index.end())
{
--idx;
}
if (idx != m_fde_index.begin() && idx->bounds.GetBaseAddress().GetOffset() != addr.GetOffset())
{
--idx;
}
if (idx->bounds.ContainsFileAddress (addr))
{
fde_entry = *idx;
return true;
}
return false;
}
const DWARFCallFrameInfo::CIE*
DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
{
cie_map_t::iterator pos = m_cie_map.find(cie_offset);
if (pos != m_cie_map.end())
{
// Parse and cache the CIE
if (pos->second.get() == NULL)
pos->second = ParseCIE (cie_offset);
return pos->second.get();
}
return NULL;
}
DWARFCallFrameInfo::CIESP
DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
{
CIESP cie_sp(new CIE(cie_offset));
dw_offset_t offset = cie_offset;
if (m_cfi_data_initialized == false)
GetCFIData();
const uint32_t length = m_cfi_data.GetU32(&offset);
const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
const dw_offset_t end_offset = cie_offset + length + 4;
if (length > 0 && ((!m_is_eh_frame && cie_id == 0xfffffffful) || (m_is_eh_frame && cie_id == 0ul)))
{
size_t i;
// cie.offset = cie_offset;
// cie.length = length;
// cie.cieID = cieID;
cie_sp->ptr_encoding = DW_EH_PE_absptr;
cie_sp->version = m_cfi_data.GetU8(&offset);
for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
{
cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
if (cie_sp->augmentation[i] == '\0')
{
// Zero out remaining bytes in augmentation string
for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
cie_sp->augmentation[j] = '\0';
break;
}
}
if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
{
Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
return cie_sp;
}
cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
if (cie_sp->augmentation[0])
{
// Get the length of the eh_frame augmentation data
// which starts with a ULEB128 length in bytes
const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
const size_t aug_data_end = offset + aug_data_len;
const size_t aug_str_len = strlen(cie_sp->augmentation);
// A 'z' may be present as the first character of the string.
// If present, the Augmentation Data field shall be present.
// The contents of the Augmentation Data shall be intepreted
// according to other characters in the Augmentation String.
if (cie_sp->augmentation[0] == 'z')
{
// Extract the Augmentation Data
size_t aug_str_idx = 0;
for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
{
char aug = cie_sp->augmentation[aug_str_idx];
switch (aug)
{
case 'L':
// Indicates the presence of one argument in the
// Augmentation Data of the CIE, and a corresponding
// argument in the Augmentation Data of the FDE. The
// argument in the Augmentation Data of the CIE is
// 1-byte and represents the pointer encoding used
// for the argument in the Augmentation Data of the
// FDE, which is the address of a language-specific
// data area (LSDA). The size of the LSDA pointer is
// specified by the pointer encoding used.
m_cfi_data.GetU8(&offset);
break;
case 'P':
// Indicates the presence of two arguments in the
// Augmentation Data of the cie_sp-> The first argument
// is 1-byte and represents the pointer encoding
// used for the second argument, which is the
// address of a personality routine handler. The
// size of the personality routine pointer is
// specified by the pointer encoding used.
{
uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
}
break;
case 'R':
// A 'R' may be present at any position after the
// first character of the string. The Augmentation
// Data shall include a 1 byte argument that
// represents the pointer encoding for the address
// pointers used in the FDE.
cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
break;
}
}
}
else if (strcmp(cie_sp->augmentation, "eh") == 0)
{
// If the Augmentation string has the value "eh", then
// the EH Data field shall be present
}
// Set the offset to be the end of the augmentation data just in case
// we didn't understand any of the data.
offset = (uint32_t)aug_data_end;
}
if (end_offset > offset)
{
cie_sp->inst_offset = offset;
cie_sp->inst_length = end_offset - offset;
}
while (offset < end_offset)
{
uint8_t inst = m_cfi_data.GetU8(&offset);
uint8_t primary_opcode = inst & 0xC0;
uint8_t extended_opcode = inst & 0x3F;
if (extended_opcode == DW_CFA_def_cfa)
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
cie_sp->initial_row.SetCFARegister (reg_num);
cie_sp->initial_row.SetCFAOffset (op_offset);
continue;
}
if (primary_opcode == DW_CFA_offset)
{
// 0x80 - high 2 bits are 0x2, lower 6 bits are register.
// Takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
uint32_t reg_num = extended_opcode;
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
UnwindPlan::Row::RegisterLocation reg_location;
reg_location.SetAtCFAPlusOffset(op_offset);
cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
continue;
}
if (extended_opcode == DW_CFA_nop)
{
continue;
}
break; // Stop if we hit an unrecognized opcode
}
}
return cie_sp;
}
void
DWARFCallFrameInfo::GetCFIData()
{
if (m_cfi_data_initialized == false)
{
LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log)
m_objfile.GetModule()->LogMessage(log.get(), "Reading EH frame info");
m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
m_cfi_data_initialized = true;
}
}
// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
// of the functions and a pointer back to the function's FDE for later expansion.
// Internalize CIEs as we come across them.
void
DWARFCallFrameInfo::GetFDEIndex ()
{
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return;
if (m_fde_index_initialized)
return;
Mutex::Locker locker(m_fde_index_mutex);
if (m_fde_index_initialized) // if two threads hit the locker
return;
dw_offset_t offset = 0;
if (m_cfi_data_initialized == false)
GetCFIData();
while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
{
const dw_offset_t current_entry = offset;
uint32_t len = m_cfi_data.GetU32 (&offset);
dw_offset_t next_entry = current_entry + len + 4;
dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
if (cie_id == 0 || cie_id == UINT32_MAX)
{
m_cie_map[current_entry] = ParseCIE (current_entry);
offset = next_entry;
continue;
}
const dw_offset_t cie_offset = current_entry + 4 - cie_id;
const CIE *cie = GetCIE (cie_offset);
if (cie)
{
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
FDEEntry fde;
fde.bounds = AddressRange (addr, length, m_objfile.GetSectionList());
fde.offset = current_entry;
m_fde_index.push_back(fde);
}
else
{
Host::SystemLog (Host::eSystemLogError,
"error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
cie_offset,
cie_id,
current_entry);
}
offset = next_entry;
}
std::sort (m_fde_index.begin(), m_fde_index.end());
m_fde_index_initialized = true;
}
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
{
dw_offset_t current_entry = offset;
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return false;
if (m_cfi_data_initialized == false)
GetCFIData();
uint32_t length = m_cfi_data.GetU32 (&offset);
dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
assert (cie_offset != 0 && cie_offset != UINT32_MAX);
// Translate the CIE_id from the eh_frame format, which
// is relative to the FDE offset, into a __eh_frame section
// offset
if (m_is_eh_frame)
{
unwind_plan.SetSourceName ("eh_frame CFI");
cie_offset = current_entry + 4 - cie_offset;
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
}
else
{
unwind_plan.SetSourceName ("DWARF CFI");
// In theory the debug_frame info should be valid at all call sites
// ("asynchronous unwind info" as it is sometimes called) but in practice
// gcc et al all emit call frame info for the prologue and call sites, but
// not for the epilogue or all the other locations during the function reliably.
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
}
unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
const CIE *cie = GetCIE (cie_offset);
assert (cie != NULL);
const dw_offset_t end_offset = current_entry + length + 4;
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
range.SetByteSize (range_len);
if (cie->augmentation[0] == 'z')
{
uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
offset += aug_data_len;
}
uint32_t reg_num = 0;
int32_t op_offset = 0;
uint32_t code_align = cie->code_align;
int32_t data_align = cie->data_align;
unwind_plan.SetPlanValidAddressRange (range);
UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
*cie_initial_row = cie->initial_row;
UnwindPlan::RowSP row(cie_initial_row);
unwind_plan.SetRegisterKind (m_reg_kind);
unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
UnwindPlan::Row::RegisterLocation reg_location;
while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
{
uint8_t inst = m_cfi_data.GetU8(&offset);
uint8_t primary_opcode = inst & 0xC0;
uint8_t extended_opcode = inst & 0x3F;
if (primary_opcode)
{
switch (primary_opcode)
{
case DW_CFA_advance_loc : // (Row Creation Instruction)
{ // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
// takes a single argument that represents a constant delta. The
// required action is to create a new table row with a location
// value that is computed by taking the current entry's location
// value and adding (delta * code_align). All other
// values in the new row are initially identical to the current row.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset(extended_opcode * code_align);
}
break;
case DW_CFA_offset :
{ // 0x80 - high 2 bits are 0x2, lower 6 bits are register
// takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
reg_num = extended_opcode;
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_restore :
{ // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
// takes a single argument that represents a register number. The
// required action is to change the rule for the indicated register
// to the rule assigned it by the initial_instructions in the CIE.
reg_num = extended_opcode;
// We only keep enough register locations around to
// unwind what is in our thread, and these are organized
// by the register index in that state, so we need to convert our
// GCC register number from the EH frame info, to a register index
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
row->SetRegisterInfo (reg_num, reg_location);
}
break;
}
}
else
{
switch (extended_opcode)
{
case DW_CFA_nop : // 0x0
break;
case DW_CFA_set_loc : // 0x1 (Row Creation Instruction)
{
// DW_CFA_set_loc takes a single argument that represents an address.
// The required action is to create a new table row using the
// specified address as the location. All other values in the new row
// are initially identical to the current row. The new location value
// should always be greater than the current one.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
}
break;
case DW_CFA_advance_loc1 : // 0x2 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
}
break;
case DW_CFA_advance_loc2 : // 0x3 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
}
break;
case DW_CFA_advance_loc4 : // 0x4 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
}
break;
case DW_CFA_offset_extended : // 0x5
{
// takes two unsigned LEB128 arguments representing a register number
// and a factored offset. This instruction is identical to DW_CFA_offset
// except for the encoding and size of the register argument.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_restore_extended : // 0x6
{
// takes a single unsigned LEB128 argument that represents a register
// number. This instruction is identical to DW_CFA_restore except for
// the encoding and size of the register argument.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_undefined : // 0x7
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to undefined.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetUndefined();
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_same_value : // 0x8
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to same value.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetSame();
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_register : // 0x9
{
// takes two unsigned LEB128 arguments representing register numbers.
// The required action is to set the rule for the first register to be
// the second register.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetInRegister(other_reg_num);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_remember_state : // 0xA
{
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
unwind_plan.AppendRow (row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
}
break;
case DW_CFA_restore_state : // 0xB
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
{
row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
}
break;
case DW_CFA_def_cfa : // 0xC (CFA Definition Instruction)
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFARegister (reg_num);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_register : // 0xD (CFA Definition Instruction)
{
// takes a single unsigned LEB128 argument representing a register
// number. The required action is to define the current CFA rule to
// use the provided register (but to keep the old offset).
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFARegister (reg_num);
}
break;
case DW_CFA_def_cfa_offset : // 0xE (CFA Definition Instruction)
{
// Takes a single unsigned LEB128 operand representing a
// (non-factored) offset. The required action is to define
// the current CFA rule to use the provided offset (but
// to keep the old register).
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_expression : // 0xF (CFA Definition Instruction)
{
size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
offset += (uint32_t)block_len;
}
break;
case DW_CFA_expression : // 0x10
{
// Takes two operands: an unsigned LEB128 value representing
// a register number, and a DW_FORM_block value representing a DWARF
// expression. The required action is to change the rule for the
// register indicated by the register number to be an expression(E)
// rule where E is the DWARF expression. That is, the DWARF
// expression computes the address. The value of the CFA is
// pushed on the DWARF evaluation stack prior to execution of
// the DWARF expression.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
reg_location.SetAtDWARFExpression(block_data, block_len);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_offset_extended_sf : // 0x11
{
// takes two operands: an unsigned LEB128 value representing a
// register number and a signed LEB128 factored offset. This
// instruction is identical to DW_CFA_offset_extended except
//that the second operand is signed and factored.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_def_cfa_sf : // 0x12 (CFA Definition Instruction)
{
// Takes two operands: an unsigned LEB128 value representing
// a register number and a signed LEB128 factored offset.
// This instruction is identical to DW_CFA_def_cfa except
// that the second operand is signed and factored.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
row->SetCFARegister (reg_num);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_offset_sf : // 0x13 (CFA Definition Instruction)
{
// takes a signed LEB128 operand representing a factored
// offset. This instruction is identical to DW_CFA_def_cfa_offset
// except that the operand is signed and factored.
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_val_expression : // 0x16
{
// takes two operands: an unsigned LEB128 value representing a register
// number, and a DW_FORM_block value representing a DWARF expression.
// The required action is to change the rule for the register indicated
// by the register number to be a val_expression(E) rule where E is the
// DWARF expression. That is, the DWARF expression computes the value of
// the given register. The value of the CFA is pushed on the DWARF
// evaluation stack prior to execution of the DWARF expression.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
//#if defined(__i386__) || defined(__x86_64__)
// // The EH frame info for EIP and RIP contains code that looks for traps to
// // be a specific type and increments the PC.
// // For i386:
// // DW_CFA_val_expression where:
// // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
// // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
// // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
// // DW_OP_and, DW_OP_plus
// // This basically does a:
// // eip = ucontenxt.mcontext32->gpr.eip;
// // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
// // eip++;
// //
// // For x86_64:
// // DW_CFA_val_expression where:
// // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
// // DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
// // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
// // This basically does a:
// // rip = ucontenxt.mcontext64->gpr.rip;
// // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
// // rip++;
// // The trap comparisons and increments are not needed as it hoses up the unwound PC which
// // is expected to point at least past the instruction that causes the fault/trap. So we
// // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
// if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
// {
// if (thread->Is64Bit())
// {
// if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
// block_len = 8;
// }
// else
// {
// if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
// block_len = 7;
// }
// }
//#endif
reg_location.SetIsDWARFExpression(block_data, block_len);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_val_offset : // 0x14
case DW_CFA_val_offset_sf : // 0x15
default:
break;
}
}
}
unwind_plan.AppendRow(row);
return true;
}
|