summaryrefslogtreecommitdiffstats
path: root/lldb/source/Plugins/Process/Utility/libunwind/src/DwarfInstructions.hpp
blob: 8b835b8cd29b1ebb51b3c72c8f873b6374a94626 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 vi:set tabstop=4 expandtab: -*/
//===-- DwarfInstructions.hpp -----------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
 
//
// processor specific parsing of dwarf unwind instructions
//

#ifndef __DWARF_INSTRUCTIONS_HPP__
#define __DWARF_INSTRUCTIONS_HPP__

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include <algorithm>
#include <vector>

#include <libunwind.h>
#include <mach-o/compact_unwind_encoding.h>

#include "dwarf2.h"
#include "AddressSpace.hpp"
#include "Registers.hpp"
#include "DwarfParser.hpp"
#include "InternalMacros.h"
//#include "CompactUnwinder.hpp"

#define EXTRACT_BITS(value, mask) \
	( (value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask)))-1) )

#define CFI_INVALID_ADDRESS ((pint_t)(-1))

namespace lldb_private {

///
/// Used by linker when parsing __eh_frame section
///  
template <typename A>
struct CFI_Reference {
	typedef typename A::pint_t		pint_t;	
	uint8_t		encodingOfTargetAddress;
	uint32_t	offsetInCFI;
	pint_t		targetAddress;
};
template <typename A>
struct CFI_Atom_Info {
	typedef typename A::pint_t		pint_t;	
	pint_t			address;
	uint32_t		size;
	bool			isCIE;
	union {
		struct {
			CFI_Reference<A>	function;
			CFI_Reference<A>	cie;
			CFI_Reference<A>	lsda;
			uint32_t		compactUnwindInfo;
		}			fdeInfo;
		struct {
			CFI_Reference<A>	personality;
		}			cieInfo;
	} u;
};

typedef void (*WarnFunc)(void* ref, uint64_t funcAddr, const char* msg);  

///
/// DwarfInstructions maps abtract dwarf unwind instructions to a particular architecture
///  
template <typename A, typename R>
class DwarfInstructions
{
public:
	typedef typename A::pint_t		pint_t;	
	typedef typename A::sint_t		sint_t;	

	static const char* parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength, 
						CFI_Atom_Info<A>* infos, uint32_t infosCount, void* ref, WarnFunc warn);


	static compact_unwind_encoding_t createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart, 
																pint_t* lsda, pint_t* personality,
																char warningBuffer[1024]);

	static int stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers);
										
private:

	enum {
		DW_X86_64_RET_ADDR = 16
	};

	enum {
		DW_X86_RET_ADDR = 8
	};

	static pint_t evaluateExpression(pint_t expression, A& addressSpace, const R& registers, pint_t initialStackValue);
	static pint_t getSavedRegister(A& addressSpace, const R& registers, pint_t cfa, 
										const typename CFI_Parser<A>::RegisterLocation& savedReg);
	static double getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa, 
										const typename CFI_Parser<A>::RegisterLocation& savedReg);
	static v128 getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa, 
										const typename CFI_Parser<A>::RegisterLocation& savedReg);
										
	// x86 specific variants
	static int    lastRestoreReg(const Registers_x86&);
	static bool   isReturnAddressRegister(int regNum, const Registers_x86&);
	static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86&);

	static uint32_t getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
	static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86&);
	static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
												const Registers_x86&, const typename CFI_Parser<A>::PrologInfo& prolog,
												char warningBuffer[1024]);

	// x86_64 specific variants
	static int    lastRestoreReg(const Registers_x86_64&);
	static bool   isReturnAddressRegister(int regNum, const Registers_x86_64&);
	static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86_64&);

	static uint32_t getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
	static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86_64&);
	static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
												const Registers_x86_64&, const typename CFI_Parser<A>::PrologInfo& prolog,
												char warningBuffer[1024]);
};


											

template <typename A, typename R>
const char* DwarfInstructions<A,R>::parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength, 
												CFI_Atom_Info<A>* infos, uint32_t infosCount, void* ref, WarnFunc warn)
{
	typename CFI_Parser<A>::CIE_Info cieInfo;
	CFI_Atom_Info<A>* entry = infos;
	CFI_Atom_Info<A>* end = &infos[infosCount];
	const pint_t ehSectionEnd = ehSectionStart + sectionLength;
	for (pint_t p=ehSectionStart; p < ehSectionEnd; ) {
		pint_t currentCFI = p;
		uint64_t cfiLength = addressSpace.get32(p);
		p += 4;
		if ( cfiLength == 0xffffffff ) {
			// 0xffffffff means length is really next 8 bytes
			cfiLength = addressSpace.get64(p);
			p += 8;
		}
		if ( cfiLength == 0 ) 
			return NULL;	// end marker
		if ( entry >= end )
			return "too little space allocated for parseCFIs";
		pint_t nextCFI = p + cfiLength;
		uint32_t id = addressSpace.get32(p);
		if ( id == 0 ) {
			// is CIE
			const char* err = CFI_Parser<A>::parseCIE(addressSpace, currentCFI, &cieInfo);
			if ( err != NULL ) 
				return err;
			entry->address = currentCFI;
			entry->size = nextCFI - currentCFI;
			entry->isCIE = true;
			entry->u.cieInfo.personality.targetAddress = cieInfo.personality;
			entry->u.cieInfo.personality.offsetInCFI = cieInfo.personalityOffsetInCIE;
			entry->u.cieInfo.personality.encodingOfTargetAddress = cieInfo.personalityEncoding;
			++entry;
		}
		else {
			// is FDE
			entry->address = currentCFI;
			entry->size = nextCFI - currentCFI;
			entry->isCIE = false;
			entry->u.fdeInfo.function.targetAddress = CFI_INVALID_ADDRESS;
			entry->u.fdeInfo.cie.targetAddress = CFI_INVALID_ADDRESS;
			entry->u.fdeInfo.lsda.targetAddress = CFI_INVALID_ADDRESS;
			uint32_t ciePointer = addressSpace.get32(p);
			pint_t cieStart = p-ciePointer;
			// validate pointer to CIE is within section
			if ( (cieStart < ehSectionStart) || (cieStart > ehSectionEnd) )
				return "FDE points to CIE outside __eh_frame section";
			// optimize usual case where cie is same for all FDEs
			if ( cieStart != cieInfo.cieStart ) {
				const char* err = CFI_Parser<A>::parseCIE(addressSpace, cieStart, &cieInfo);
				if ( err != NULL ) 
					return err;
			}
			entry->u.fdeInfo.cie.targetAddress = cieStart;
			entry->u.fdeInfo.cie.offsetInCFI = p-currentCFI;
			entry->u.fdeInfo.cie.encodingOfTargetAddress = DW_EH_PE_sdata4 | DW_EH_PE_pcrel;
			p += 4;
			// parse pc begin and range
			pint_t offsetOfFunctionAddress = p-currentCFI;
			pint_t pcStart = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding);
			pint_t pcRange = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding & 0x0F);
			//fprintf(stderr, "FDE with pcRange [0x%08llX, 0x%08llX)\n",(uint64_t)pcStart, (uint64_t)(pcStart+pcRange));
			// test if pc is within the function this FDE covers
			entry->u.fdeInfo.function.targetAddress = pcStart;
			entry->u.fdeInfo.function.offsetInCFI = offsetOfFunctionAddress;
			entry->u.fdeInfo.function.encodingOfTargetAddress = cieInfo.pointerEncoding;
			// check for augmentation length
			if ( cieInfo.fdesHaveAugmentationData ) {
				uintptr_t augLen = addressSpace.getULEB128(p, nextCFI);
				pint_t endOfAug = p + augLen;
				if ( cieInfo.lsdaEncoding != 0 ) {
					// peek at value (without indirection).  Zero means no lsda
					pint_t lsdaStart = p;
					if ( addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding & 0x0F) != 0 ) {
						// reset pointer and re-parse lsda address
						p = lsdaStart;
						pint_t offsetOfLSDAAddress = p-currentCFI;
						entry->u.fdeInfo.lsda.targetAddress = addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding);
						entry->u.fdeInfo.lsda.offsetInCFI = offsetOfLSDAAddress;
						entry->u.fdeInfo.lsda.encodingOfTargetAddress = cieInfo.lsdaEncoding;
					}
				}
				p = endOfAug;
			}
			// compute compact unwind encoding
			typename CFI_Parser<A>::FDE_Info fdeInfo;
			fdeInfo.fdeStart = currentCFI;
			fdeInfo.fdeLength = nextCFI - currentCFI;
			fdeInfo.fdeInstructions = p;
			fdeInfo.pcStart = pcStart;
			fdeInfo.pcEnd = pcStart +  pcRange;
			fdeInfo.lsda = entry->u.fdeInfo.lsda.targetAddress;
			typename CFI_Parser<A>::PrologInfo prolog;
			R dummy; // for proper selection of architecture specific functions
			if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
				char warningBuffer[1024];
				entry->u.fdeInfo.compactUnwindInfo = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
				if ( fdeInfo.lsda != CFI_INVALID_ADDRESS ) 
					entry->u.fdeInfo.compactUnwindInfo |= UNWIND_HAS_LSDA;
				if ( warningBuffer[0] != '\0' )
					warn(ref, fdeInfo.pcStart, warningBuffer);
			}
			else {
				warn(ref, CFI_INVALID_ADDRESS, "dwarf unwind instructions could not be parsed");
				entry->u.fdeInfo.compactUnwindInfo = encodeToUseDwarf(dummy);
			}
			++entry;
		}
		p = nextCFI;
	}
	if ( entry != end )
		return "wrong entry count for parseCFIs";
	return NULL; // success
}




template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart, 
																		pint_t* lsda, pint_t* personality,
																		char warningBuffer[1024])
{
	typename CFI_Parser<A>::FDE_Info fdeInfo;
	typename CFI_Parser<A>::CIE_Info cieInfo;
	R dummy; // for proper selection of architecture specific functions
	if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
		typename CFI_Parser<A>::PrologInfo prolog;
		if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
			*lsda = fdeInfo.lsda;
			*personality = cieInfo.personality;
			compact_unwind_encoding_t encoding;
			encoding = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
			if ( fdeInfo.lsda != 0 ) 
				encoding |= UNWIND_HAS_LSDA;
			return encoding;
		}
		else {
			strcpy(warningBuffer, "dwarf unwind instructions could not be parsed");
			return encodeToUseDwarf(dummy);
		}
	}
	else {
		strcpy(warningBuffer, "dwarf FDE could not be parsed");
		return encodeToUseDwarf(dummy);
	}
}


template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getSavedRegister(A& addressSpace, const R& registers, pint_t cfa,
													const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
	switch ( savedReg.location ) {
		case CFI_Parser<A>::kRegisterInCFA:
			return addressSpace.getP(cfa + savedReg.value);

		case CFI_Parser<A>::kRegisterAtExpression:
			return addressSpace.getP(evaluateExpression(savedReg.value, addressSpace, registers, cfa));

		case CFI_Parser<A>::kRegisterIsExpression:
			return evaluateExpression(savedReg.value, addressSpace, registers, cfa);

		case CFI_Parser<A>::kRegisterInRegister:
			return registers.getRegister(savedReg.value);

		case CFI_Parser<A>::kRegisterUnused:
		case CFI_Parser<A>::kRegisterOffsetFromCFA:
			// FIX ME
			break;
	}
	ABORT("unsupported restore location for register");
}

template <typename A, typename R>
double DwarfInstructions<A,R>::getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa,
													const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
	switch ( savedReg.location ) {
		case CFI_Parser<A>::kRegisterInCFA:
			return addressSpace.getDouble(cfa + savedReg.value);

		case CFI_Parser<A>::kRegisterAtExpression:
			return addressSpace.getDouble(evaluateExpression(savedReg.value, addressSpace, registers, cfa));

		case CFI_Parser<A>::kRegisterIsExpression:
		case CFI_Parser<A>::kRegisterUnused:
		case CFI_Parser<A>::kRegisterOffsetFromCFA:
		case CFI_Parser<A>::kRegisterInRegister:
			// FIX ME
			break;
	}
	ABORT("unsupported restore location for float register");
}

template <typename A, typename R>
v128 DwarfInstructions<A,R>::getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa,
													const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
	switch ( savedReg.location ) {
		case CFI_Parser<A>::kRegisterInCFA:
			return addressSpace.getVector(cfa + savedReg.value);

		case CFI_Parser<A>::kRegisterAtExpression:
			return addressSpace.getVector(evaluateExpression(savedReg.value, addressSpace, registers, cfa));

		case CFI_Parser<A>::kRegisterIsExpression:
		case CFI_Parser<A>::kRegisterUnused:
		case CFI_Parser<A>::kRegisterOffsetFromCFA:
		case CFI_Parser<A>::kRegisterInRegister:
			// FIX ME
			break;
	}
	ABORT("unsupported restore location for vector register");
}


template <typename A, typename R>
int DwarfInstructions<A,R>::stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers)
{
	//fprintf(stderr, "stepWithDwarf(pc=0x%0llX, fdeStart=0x%0llX)\n", (uint64_t)pc, (uint64_t)fdeStart);
	typename CFI_Parser<A>::FDE_Info fdeInfo;
	typename CFI_Parser<A>::CIE_Info cieInfo;
	if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
		typename CFI_Parser<A>::PrologInfo prolog;
		if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, pc, &prolog) ) {
			R newRegisters = registers;
			
			// get pointer to cfa (architecture specific)
			pint_t cfa = getCFA(addressSpace, prolog, registers);

			// restore registers that dwarf says were saved
			pint_t returnAddress = 0;
			for (int i=0; i <= lastRestoreReg(newRegisters); ++i) {
				if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
					if ( registers.validFloatRegister(i) )
						newRegisters.setFloatRegister(i, getSavedFloatRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
					else if ( registers.validVectorRegister(i) )
						newRegisters.setVectorRegister(i, getSavedVectorRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
					else if ( isReturnAddressRegister(i, registers) )
						returnAddress = getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]);
					else if ( registers.validRegister(i) )
						newRegisters.setRegister(i, getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
					else
						return UNW_EBADREG;
				}
			}
			
			// by definition the CFA is the stack pointer at the call site, so restoring SP means setting it to CFA
			newRegisters.setSP(cfa);

			// return address is address after call site instruction, so setting IP to that does a return
			newRegisters.setIP(returnAddress);
			
			// do the actual step by replacing the register set with the new ones
			registers = newRegisters;

			return UNW_STEP_SUCCESS;
		}
	}
	return UNW_EBADFRAME;
}



template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::evaluateExpression(pint_t expression, A& addressSpace, 
														const R& registers, pint_t initialStackValue)
{
	const bool log = false;
	pint_t p = expression;
	pint_t expressionEnd = expression+20; // just need something until length is read
	uint64_t length = addressSpace.getULEB128(p, expressionEnd);
	expressionEnd = p + length;
	if (log) fprintf(stderr, "evaluateExpression(): length=%llu\n", length);
	pint_t stack[100];
	pint_t* sp = stack;
	*(++sp) = initialStackValue;
	
	while ( p < expressionEnd ) {
		if (log) {
			for(pint_t* t = sp; t > stack; --t) {
				fprintf(stderr, "sp[] = 0x%llX\n", (uint64_t)(*t));
			}
		}
		uint8_t opcode = addressSpace.get8(p++);
		sint_t svalue;
		pint_t value;
		uint32_t reg;
		switch (opcode) {
			case DW_OP_addr:
				// push immediate address sized value
				value = addressSpace.getP(p);
				p += sizeof(pint_t);
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
		
			case DW_OP_deref:
				// pop stack, dereference, push result
				value = *sp--;
				*(++sp) = addressSpace.getP(value);
				if (log) fprintf(stderr, "dereference 0x%llX\n", (uint64_t)value);
				break;
		
			case DW_OP_const1u:
				// push immediate 1 byte value
				value = addressSpace.get8(p);
				p += 1;
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
				
			case DW_OP_const1s:
				// push immediate 1 byte signed value
				svalue = (int8_t)addressSpace.get8(p);
				p += 1;
				*(++sp) = svalue;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
				break;
		
			case DW_OP_const2u:
				// push immediate 2 byte value
				value = addressSpace.get16(p);
				p += 2;
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
				
			case DW_OP_const2s:
				// push immediate 2 byte signed value
				svalue = (int16_t)addressSpace.get16(p);
				p += 2;
				*(++sp) = svalue;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
				break;
		
			case DW_OP_const4u:
				// push immediate 4 byte value
				value = addressSpace.get32(p);
				p += 4;
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
				
			case DW_OP_const4s:
				// push immediate 4 byte signed value
				svalue = (int32_t)addressSpace.get32(p);
				p += 4;
				*(++sp) = svalue;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
				break;
				
			case DW_OP_const8u:
				// push immediate 8 byte value
				value = addressSpace.get64(p);
				p += 8;
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
				
			case DW_OP_const8s:
				// push immediate 8 byte signed value
				value = (int32_t)addressSpace.get64(p);
				p += 8;
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
		
			case DW_OP_constu:
				// push immediate ULEB128 value
				value = addressSpace.getULEB128(p, expressionEnd);
				*(++sp) = value;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
				break;
				
			case DW_OP_consts:
				// push immediate SLEB128 value
				svalue = addressSpace.getSLEB128(p, expressionEnd);
				*(++sp) = svalue;
				if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
				break;
		
			case DW_OP_dup:
				// push top of stack
				value = *sp;
				*(++sp) = value;
				if (log) fprintf(stderr, "duplicate top of stack\n");
				break;
				
			case DW_OP_drop:
				// pop
				--sp; 
				if (log) fprintf(stderr, "pop top of stack\n");
				break;
				
			case DW_OP_over:
				// dup second
				value = sp[-1];
				*(++sp) = value;
				if (log) fprintf(stderr, "duplicate second in stack\n");
				break;

			case DW_OP_pick:
				// pick from
				reg = addressSpace.get8(p);
				p += 1;
				value = sp[-reg];
				*(++sp) = value;
				if (log) fprintf(stderr, "duplicate %d in stack\n", reg);
				break;

			case DW_OP_swap:
				// swap top two
				value = sp[0];
				sp[0] = sp[-1];
				sp[-1] = value;
				if (log) fprintf(stderr, "swap top of stack\n");
				break;

			case DW_OP_rot:
				// rotate top three
				value = sp[0];
				sp[0] = sp[-1];
				sp[-1] = sp[-2];
				sp[-2] = value;
				if (log) fprintf(stderr, "rotate top three of stack\n");
				break;

			case DW_OP_xderef:
				// pop stack, dereference, push result
				value = *sp--;
				*sp = *((uint64_t*)value);
				if (log) fprintf(stderr, "x-dereference 0x%llX\n", (uint64_t)value);
				break;
			
			case DW_OP_abs:
				svalue = *sp;
				if ( svalue < 0 )
					*sp = -svalue;
				if (log) fprintf(stderr, "abs\n");
				break;
		
			case DW_OP_and:
				value = *sp--;
				*sp &= value;
				if (log) fprintf(stderr, "and\n");
				break;
			
			case DW_OP_div:
				svalue = *sp--;
				*sp = *sp / svalue;
				if (log) fprintf(stderr, "div\n");
				break;
			
			case DW_OP_minus:
				svalue = *sp--;
				*sp = *sp - svalue;
				if (log) fprintf(stderr, "minus\n");
				break;

			case DW_OP_mod:
				svalue = *sp--;
				*sp = *sp % svalue;
				if (log) fprintf(stderr, "module\n");
				break;

			case DW_OP_mul:
				svalue = *sp--;
				*sp = *sp * svalue;
				if (log) fprintf(stderr, "mul\n");
				break;

			case DW_OP_neg:
				*sp =  0 - *sp;
				if (log) fprintf(stderr, "neg\n");
				break;

			case DW_OP_not:
				svalue = *sp;
				*sp =  ~svalue;
				if (log) fprintf(stderr, "not\n");
				break;

			case DW_OP_or:
				value = *sp--;
				*sp |= value;
				if (log) fprintf(stderr, "or\n");
				break;

			case DW_OP_plus:
				value = *sp--;
				*sp += value;
				if (log) fprintf(stderr, "plus\n");
				break;

			case DW_OP_plus_uconst:
				// pop stack, add uelb128 constant, push result
				*sp += addressSpace.getULEB128(p, expressionEnd);
				if (log) fprintf(stderr, "add constant\n");
				break;
		
			case DW_OP_shl:
				value = *sp--;
				*sp = *sp << value;
				if (log) fprintf(stderr, "shift left\n");
				break;
			
			case DW_OP_shr:
				value = *sp--;
				*sp = *sp >> value;
				if (log) fprintf(stderr, "shift left\n");
				break;
				
			case DW_OP_shra:
				value = *sp--;
				svalue = *sp;
				*sp = svalue >> value;
				if (log) fprintf(stderr, "shift left arithmetric\n");
				break;
			
			case DW_OP_xor:
				value = *sp--;
				*sp ^= value;
				if (log) fprintf(stderr, "xor\n");
				break;

			case DW_OP_skip:
				svalue = (int16_t)addressSpace.get16(p);
				p += 2;
				p += svalue;
				if (log) fprintf(stderr, "skip %lld\n", (uint64_t)svalue);
				break;
			
			case DW_OP_bra:
				svalue = (int16_t)addressSpace.get16(p);
				p += 2;
				if ( *sp-- )
					p += svalue;
				if (log) fprintf(stderr, "bra %lld\n", (uint64_t)svalue);
				break;
			
			case DW_OP_eq:
				value = *sp--;
				*sp = (*sp == value);
				if (log) fprintf(stderr, "eq\n");
				break;
			
			case DW_OP_ge:
				value = *sp--;
				*sp = (*sp >= value);
				if (log) fprintf(stderr, "ge\n");
				break;
				
			case DW_OP_gt:
				value = *sp--;
				*sp = (*sp > value);
				if (log) fprintf(stderr, "gt\n");
				break;
				
			case DW_OP_le:
				value = *sp--;
				*sp = (*sp <= value);
				if (log) fprintf(stderr, "le\n");
				break;
				
			case DW_OP_lt:
				value = *sp--;
				*sp = (*sp < value);
				if (log) fprintf(stderr, "lt\n");
				break;
				
			case DW_OP_ne:
				value = *sp--;
				*sp = (*sp != value);
				if (log) fprintf(stderr, "ne\n");
				break;
			
			case DW_OP_lit0:
			case DW_OP_lit1:
			case DW_OP_lit2:
			case DW_OP_lit3:
			case DW_OP_lit4:
			case DW_OP_lit5:
			case DW_OP_lit6:
			case DW_OP_lit7:
			case DW_OP_lit8:
			case DW_OP_lit9:
			case DW_OP_lit10:
			case DW_OP_lit11:
			case DW_OP_lit12:
			case DW_OP_lit13:
			case DW_OP_lit14:
			case DW_OP_lit15:
			case DW_OP_lit16:
			case DW_OP_lit17:
			case DW_OP_lit18:
			case DW_OP_lit19:
			case DW_OP_lit20:
			case DW_OP_lit21:
			case DW_OP_lit22:
			case DW_OP_lit23:
			case DW_OP_lit24:
			case DW_OP_lit25:
			case DW_OP_lit26:
			case DW_OP_lit27:
			case DW_OP_lit28:
			case DW_OP_lit29:
			case DW_OP_lit30:
			case DW_OP_lit31:
				value = opcode - DW_OP_lit0;
				*(++sp) = value;
				if (log) fprintf(stderr, "push literal 0x%llX\n", (uint64_t)value);
				break;
		
			case DW_OP_reg0:
			case DW_OP_reg1:
			case DW_OP_reg2:
			case DW_OP_reg3:
			case DW_OP_reg4:
			case DW_OP_reg5:
			case DW_OP_reg6:
			case DW_OP_reg7:
			case DW_OP_reg8:
			case DW_OP_reg9:
			case DW_OP_reg10:
			case DW_OP_reg11:
			case DW_OP_reg12:
			case DW_OP_reg13:
			case DW_OP_reg14:
			case DW_OP_reg15:
			case DW_OP_reg16:
			case DW_OP_reg17:
			case DW_OP_reg18:
			case DW_OP_reg19:
			case DW_OP_reg20:
			case DW_OP_reg21:
			case DW_OP_reg22:
			case DW_OP_reg23:
			case DW_OP_reg24:
			case DW_OP_reg25:
			case DW_OP_reg26:
			case DW_OP_reg27:
			case DW_OP_reg28:
			case DW_OP_reg29:
			case DW_OP_reg30:
			case DW_OP_reg31:
				reg = opcode - DW_OP_reg0;
				*(++sp) = registers.getRegister(reg);
				if (log) fprintf(stderr, "push reg %d\n", reg);
				break;
		
			case DW_OP_regx:
				reg = addressSpace.getULEB128(p, expressionEnd);
				*(++sp) = registers.getRegister(reg);
				if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
				break;			

			case DW_OP_breg0:
			case DW_OP_breg1:
			case DW_OP_breg2:
			case DW_OP_breg3:
			case DW_OP_breg4:
			case DW_OP_breg5:
			case DW_OP_breg6:
			case DW_OP_breg7:
			case DW_OP_breg8:
			case DW_OP_breg9:
			case DW_OP_breg10:
			case DW_OP_breg11:
			case DW_OP_breg12:
			case DW_OP_breg13:
			case DW_OP_breg14:
			case DW_OP_breg15:
			case DW_OP_breg16:
			case DW_OP_breg17:
			case DW_OP_breg18:
			case DW_OP_breg19:
			case DW_OP_breg20:
			case DW_OP_breg21:
			case DW_OP_breg22:
			case DW_OP_breg23:
			case DW_OP_breg24:
			case DW_OP_breg25:
			case DW_OP_breg26:
			case DW_OP_breg27:
			case DW_OP_breg28:
			case DW_OP_breg29:
			case DW_OP_breg30:
			case DW_OP_breg31:
				reg = opcode - DW_OP_breg0;
				svalue = addressSpace.getSLEB128(p, expressionEnd);
				*(++sp) = registers.getRegister(reg) + svalue;
				if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
				break;
			
			case DW_OP_bregx:
				reg = addressSpace.getULEB128(p, expressionEnd);
				svalue = addressSpace.getSLEB128(p, expressionEnd);
				*(++sp) = registers.getRegister(reg) + svalue;
				if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
				break;
			
			case DW_OP_fbreg:
				ABORT("DW_OP_fbreg not implemented");
				break;
				
			case DW_OP_piece:
				ABORT("DW_OP_piece not implemented");
				break;
				
			case DW_OP_deref_size:
				// pop stack, dereference, push result
				value = *sp--;
				switch ( addressSpace.get8(p++) ) {
					case 1:
						value = addressSpace.get8(value);
						break;
					case 2:
						value = addressSpace.get16(value);
						break;
					case 4:
						value = addressSpace.get32(value);
						break;
					case 8:
						value = addressSpace.get64(value);
						break;
					default:
						ABORT("DW_OP_deref_size with bad size");
				}
				*(++sp) = value;
				if (log) fprintf(stderr, "sized dereference 0x%llX\n", (uint64_t)value);
				break;
			
			case DW_OP_xderef_size:
			case DW_OP_nop:
			case DW_OP_push_object_addres:
			case DW_OP_call2:
			case DW_OP_call4:
			case DW_OP_call_ref:
			default:
				ABORT("dwarf opcode not implemented");
		}
	
	}
	if (log) fprintf(stderr, "expression evaluates to 0x%llX\n", (uint64_t)*sp);
	return *sp;
}



//
//	x86_64 specific functions
//

template <typename A, typename R>
int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86_64&) 
{
	COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_64_RET_ADDR );
	return DW_X86_64_RET_ADDR; 
}

template <typename A, typename R>
bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86_64&) 
{
	return (regNum == DW_X86_64_RET_ADDR); 
}

template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, 
										const Registers_x86_64& registers)
{
	if ( prolog.cfaRegister != 0 )
		return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
	else if ( prolog.cfaExpression != 0 )
		return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
	else
		ABORT("getCFA(): unknown location for x86_64 cfa");
}



template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86_64&) 
{
	return UNWIND_X86_64_MODE_DWARF;
}

template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86&) 
{
	return UNWIND_X86_MODE_DWARF;
}



template <typename A, typename R>
uint32_t DwarfInstructions<A,R>::getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
{
	if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 32) ) {
		failure = true;
		return 0;
	}
	unsigned int slotIndex = regOffsetFromBaseOffset/8;
	
	switch ( reg ) {
		case UNW_X86_64_RBX:
			return UNWIND_X86_64_REG_RBX << (slotIndex*3);
		case UNW_X86_64_R12:
			return UNWIND_X86_64_REG_R12 << (slotIndex*3);
		case UNW_X86_64_R13:
			return UNWIND_X86_64_REG_R13 << (slotIndex*3);
		case UNW_X86_64_R14:
			return UNWIND_X86_64_REG_R14 << (slotIndex*3);
		case UNW_X86_64_R15:
			return UNWIND_X86_64_REG_R15 << (slotIndex*3);
	}
	
	// invalid register
	failure = true;
	return 0;
}



template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
												const Registers_x86_64& r, const typename CFI_Parser<A>::PrologInfo& prolog,
												char warningBuffer[1024])
{
	warningBuffer[0] = '\0';
	
	// don't create compact unwind info for unsupported dwarf kinds
	if ( prolog.registerSavedMoreThanOnce ) {
		strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
		return UNWIND_X86_64_MODE_DWARF;
	}
	if ( prolog.cfaOffsetWasNegative ) {
		strcpy(warningBuffer, "cfa had negative offset (dwarf might contain epilog)");
		return UNWIND_X86_64_MODE_DWARF;
	}
	if ( prolog.spExtraArgSize != 0 ) {
		strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
		return UNWIND_X86_64_MODE_DWARF;
	}
	
	// figure out which kind of frame this function uses
	bool standardRBPframe = ( 
		 (prolog.cfaRegister == UNW_X86_64_RBP) 
	  && (prolog.cfaRegisterOffset == 16)
	  && (prolog.savedRegisters[UNW_X86_64_RBP].location == CFI_Parser<A>::kRegisterInCFA)
	  && (prolog.savedRegisters[UNW_X86_64_RBP].value == -16) );
	bool standardRSPframe = (prolog.cfaRegister == UNW_X86_64_RSP);
	if ( !standardRBPframe && !standardRSPframe ) {
		// no compact encoding for this
		strcpy(warningBuffer, "does not use RBP or RSP based frame");
		return UNWIND_X86_64_MODE_DWARF;
	}
	
	// scan which registers are saved
	int saveRegisterCount = 0;
	bool rbxSaved = false;
	bool r12Saved = false;
	bool r13Saved = false;
	bool r14Saved = false;
	bool r15Saved = false;
	bool rbpSaved = false;
	for (int i=0; i < 64; ++i) {
		if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
			if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
				sprintf(warningBuffer, "register %d saved somewhere other that in frame", i);
				return UNWIND_X86_64_MODE_DWARF;
			}
			switch (i) {
				case UNW_X86_64_RBX:
					rbxSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_64_R12:
					r12Saved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_64_R13:
					r13Saved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_64_R14:
					r14Saved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_64_R15:
					r15Saved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_64_RBP:
					rbpSaved = true;
					++saveRegisterCount;
					break;
				case DW_X86_64_RET_ADDR:
					break;
				default:
					sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
					return UNWIND_X86_64_MODE_DWARF;
			}
		}
	}
	const int64_t cfaOffsetRBX = prolog.savedRegisters[UNW_X86_64_RBX].value;
	const int64_t cfaOffsetR12 = prolog.savedRegisters[UNW_X86_64_R12].value;
	const int64_t cfaOffsetR13 = prolog.savedRegisters[UNW_X86_64_R13].value;
	const int64_t cfaOffsetR14 = prolog.savedRegisters[UNW_X86_64_R14].value;
	const int64_t cfaOffsetR15 = prolog.savedRegisters[UNW_X86_64_R15].value;
	const int64_t cfaOffsetRBP = prolog.savedRegisters[UNW_X86_64_RBP].value;
	
	// encode standard RBP frames
	compact_unwind_encoding_t  encoding = 0;
	if ( standardRBPframe ) {
		//		|              |
		//		+--------------+   <- CFA
		//		|   ret addr   |
		//		+--------------+
		//		|     rbp      |
		//		+--------------+   <- rbp
		//		~              ~
		//		+--------------+   
		//		|  saved reg3  |
		//		+--------------+   <- CFA - offset+16
		//		|  saved reg2  |
		//		+--------------+   <- CFA - offset+8
		//		|  saved reg1  |
		//		+--------------+   <- CFA - offset
		//		|              |
		//		+--------------+
		//		|              |
		//						   <- rsp
		//
		encoding = UNWIND_X86_64_MODE_RBP_FRAME;
		
		// find save location of farthest register from rbp
		int furthestCfaOffset = 0;
		if ( rbxSaved & (cfaOffsetRBX < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetRBX;
		if ( r12Saved & (cfaOffsetR12 < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetR12;
		if ( r13Saved & (cfaOffsetR13 < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetR13;
		if ( r14Saved & (cfaOffsetR14 < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetR14;
		if ( r15Saved & (cfaOffsetR15 < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetR15;
		
		if ( furthestCfaOffset == 0 ) {
			// no registers saved, nothing more to encode
			return encoding;
		}
		
		// add stack offset to encoding
		int rbpOffset = furthestCfaOffset + 16;
		int encodedOffset = rbpOffset/(-8);
		if ( encodedOffset > 255 ) {
			strcpy(warningBuffer, "offset of saved registers too far to encode");
			return UNWIND_X86_64_MODE_DWARF;
		}
		encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_64_RBP_FRAME_OFFSET));
		
		// add register saved from each stack location
		bool encodingFailure = false;
		if ( rbxSaved )
			encoding |= getRBPEncodedRegister(UNW_X86_64_RBX, cfaOffsetRBX - furthestCfaOffset, encodingFailure);
		if ( r12Saved )
			encoding |= getRBPEncodedRegister(UNW_X86_64_R12, cfaOffsetR12 - furthestCfaOffset, encodingFailure);
		if ( r13Saved )
			encoding |= getRBPEncodedRegister(UNW_X86_64_R13, cfaOffsetR13 - furthestCfaOffset, encodingFailure);
		if ( r14Saved )
			encoding |= getRBPEncodedRegister(UNW_X86_64_R14, cfaOffsetR14 - furthestCfaOffset, encodingFailure);
		if ( r15Saved )
			encoding |= getRBPEncodedRegister(UNW_X86_64_R15, cfaOffsetR15 - furthestCfaOffset, encodingFailure);
		
		if ( encodingFailure ){
			strcpy(warningBuffer, "saved registers not contiguous");
			return UNWIND_X86_64_MODE_DWARF;
		}

		return encoding;
	}
	else {
		//		|              |
		//		+--------------+   <- CFA
		//		|   ret addr   |
		//		+--------------+
		//		|  saved reg1  |
		//		+--------------+   <- CFA - 16
		//		|  saved reg2  |
		//		+--------------+   <- CFA - 24
		//		|  saved reg3  |
		//		+--------------+   <- CFA - 32
		//		|  saved reg4  |
		//		+--------------+   <- CFA - 40
		//		|  saved reg5  |
		//		+--------------+   <- CFA - 48
		//		|  saved reg6  |
		//		+--------------+   <- CFA - 56
		//		|              |
		//						   <- esp
		//

		// for RSP based frames we need to encode stack size in unwind info
		encoding = UNWIND_X86_64_MODE_STACK_IMMD;
		uint64_t stackValue = prolog.cfaRegisterOffset / 8;
		uint32_t stackAdjust = 0;
		bool immedStackSize = true;
		const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_64_FRAMELESS_STACK_SIZE);
		if ( stackValue > stackMaxImmedValue ) {
			// stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
			pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;		
			uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
			stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/8;
			stackValue = functionContentAdjustStackIns - funcAddr;
			immedStackSize = false;
			if ( stackAdjust > 7 ) {
				strcpy(warningBuffer, "stack subq instruction is too different from dwarf stack size");
				return UNWIND_X86_64_MODE_DWARF;
			}
			encoding = UNWIND_X86_64_MODE_STACK_IND;
		}	
		
		
		// validate that saved registers are all within 6 slots abutting return address
		int registers[6];
		for (int i=0; i < 6;++i)
			registers[i] = 0;
		if ( r15Saved ) {
			if ( cfaOffsetR15 < -56 ) {
				strcpy(warningBuffer, "r15 is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetR15+56)/8] = UNWIND_X86_64_REG_R15;
		}
		if ( r14Saved ) {
			if ( cfaOffsetR14 < -56 ) {
				strcpy(warningBuffer, "r14 is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetR14+56)/8] = UNWIND_X86_64_REG_R14;
		}
		if ( r13Saved ) {
			if ( cfaOffsetR13 < -56 ) {
				strcpy(warningBuffer, "r13 is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetR13+56)/8] = UNWIND_X86_64_REG_R13;
		}
		if ( r12Saved ) {
			if ( cfaOffsetR12 < -56 ) {
				strcpy(warningBuffer, "r12 is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetR12+56)/8] = UNWIND_X86_64_REG_R12;
		}
		if ( rbxSaved ) {
			if ( cfaOffsetRBX < -56 ) {
				strcpy(warningBuffer, "rbx is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetRBX+56)/8] = UNWIND_X86_64_REG_RBX;
		}
		if ( rbpSaved ) {
			if ( cfaOffsetRBP < -56 ) {
				strcpy(warningBuffer, "rbp is saved too far from return address");
				return UNWIND_X86_64_MODE_DWARF;
			}
			registers[(cfaOffsetRBP+56)/8] = UNWIND_X86_64_REG_RBP;
		}
		
		// validate that saved registers are contiguous and abut return address on stack
		for (int i=0; i < saveRegisterCount; ++i) {
			if ( registers[5-i] == 0 ) {
				strcpy(warningBuffer, "registers not save contiguously in stack");
				return UNWIND_X86_64_MODE_DWARF;
			}
		}
				
		// encode register permutation
		// the 10-bits are encoded differently depending on the number of registers saved
		int renumregs[6];
		for (int i=6-saveRegisterCount; i < 6; ++i) {
			int countless = 0;
			for (int j=6-saveRegisterCount; j < i; ++j) {
				if ( registers[j] < registers[i] )
					++countless;
			}
			renumregs[i] = registers[i] - countless -1;
		}
		uint32_t permutationEncoding = 0;
		switch ( saveRegisterCount ) {
			case 6:
				permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
				break;
			case 5:
				permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
				break;
			case 4:
				permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
				break;
			case 3:
				permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
				break;
			case 2:
				permutationEncoding |= (5*renumregs[4] + renumregs[5]);
				break;
			case 1:
				permutationEncoding |= (renumregs[5]);
				break;
		}
		
		encoding |= (stackValue << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_SIZE));
		encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_ADJUST));
		encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT));
		encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION));
		return encoding;
	}
}




//
//	x86 specific functions
//
template <typename A, typename R>
int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86&) 
{
	COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_RET_ADDR );
	return DW_X86_RET_ADDR; 
}

template <typename A, typename R>
bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86&) 
{
	return (regNum == DW_X86_RET_ADDR); 
}

template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, 
										const Registers_x86& registers)
{
	if ( prolog.cfaRegister != 0 )
		return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
	else if ( prolog.cfaExpression != 0 )
		return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
	else
		ABORT("getCFA(): unknown location for x86 cfa");
}





template <typename A, typename R>
uint32_t DwarfInstructions<A,R>::getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
{
	if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 16) ) {
		failure = true;
		return 0;
	}
	unsigned int slotIndex = regOffsetFromBaseOffset/4;
	
	switch ( reg ) {
		case UNW_X86_EBX:
			return UNWIND_X86_REG_EBX << (slotIndex*3);
		case UNW_X86_ECX:
			return UNWIND_X86_REG_ECX << (slotIndex*3);
		case UNW_X86_EDX:
			return UNWIND_X86_REG_EDX << (slotIndex*3);
		case UNW_X86_EDI:
			return UNWIND_X86_REG_EDI << (slotIndex*3);
		case UNW_X86_ESI:
			return UNWIND_X86_REG_ESI << (slotIndex*3);
	}
	
	// invalid register
	failure = true;
	return 0;
}

template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
												const Registers_x86& r, const typename CFI_Parser<A>::PrologInfo& prolog,
												char warningBuffer[1024])
{
	warningBuffer[0] = '\0';
	
	// don't create compact unwind info for unsupported dwarf kinds
	if ( prolog.registerSavedMoreThanOnce ) {
		strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
		return UNWIND_X86_MODE_DWARF;
	}
	if ( prolog.spExtraArgSize != 0 ) {
		strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
		return UNWIND_X86_MODE_DWARF;
	}
	
	// figure out which kind of frame this function uses
	bool standardEBPframe = ( 
		 (prolog.cfaRegister == UNW_X86_EBP) 
	  && (prolog.cfaRegisterOffset == 8)
	  && (prolog.savedRegisters[UNW_X86_EBP].location == CFI_Parser<A>::kRegisterInCFA)
	  && (prolog.savedRegisters[UNW_X86_EBP].value == -8) );
	bool standardESPframe = (prolog.cfaRegister == UNW_X86_ESP);
	if ( !standardEBPframe && !standardESPframe ) {
		// no compact encoding for this
		strcpy(warningBuffer, "does not use EBP or ESP based frame");
		return UNWIND_X86_MODE_DWARF;
	}
	
	// scan which registers are saved
	int saveRegisterCount = 0;
	bool ebxSaved = false;
	bool ecxSaved = false;
	bool edxSaved = false;
	bool esiSaved = false;
	bool ediSaved = false;
	bool ebpSaved = false;
	for (int i=0; i < 64; ++i) {
		if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
			if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
				sprintf(warningBuffer, "register %d saved somewhere other that in frame", i);
				return UNWIND_X86_MODE_DWARF;
			}
			switch (i) {
				case UNW_X86_EBX:
					ebxSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_ECX:
					ecxSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_EDX:
					edxSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_ESI:
					esiSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_EDI:
					ediSaved = true;
					++saveRegisterCount;
					break;
				case UNW_X86_EBP:
					ebpSaved = true;
					++saveRegisterCount;
					break;
				case DW_X86_RET_ADDR:
					break;
				default:
					sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
					return UNWIND_X86_MODE_DWARF;
			}
		}
	}
	const int32_t cfaOffsetEBX = prolog.savedRegisters[UNW_X86_EBX].value;
	const int32_t cfaOffsetECX = prolog.savedRegisters[UNW_X86_ECX].value;
	const int32_t cfaOffsetEDX = prolog.savedRegisters[UNW_X86_EDX].value;
	const int32_t cfaOffsetEDI = prolog.savedRegisters[UNW_X86_EDI].value;
	const int32_t cfaOffsetESI = prolog.savedRegisters[UNW_X86_ESI].value;
	const int32_t cfaOffsetEBP = prolog.savedRegisters[UNW_X86_EBP].value;
	
	// encode standard RBP frames
	compact_unwind_encoding_t  encoding = 0;
	if ( standardEBPframe ) {
		//		|              |
		//		+--------------+   <- CFA
		//		|   ret addr   |
		//		+--------------+
		//		|     ebp      |
		//		+--------------+   <- ebp
		//		~              ~
		//		+--------------+   
		//		|  saved reg3  |
		//		+--------------+   <- CFA - offset+8
		//		|  saved reg2  |
		//		+--------------+   <- CFA - offset+e
		//		|  saved reg1  |
		//		+--------------+   <- CFA - offset
		//		|              |
		//		+--------------+
		//		|              |
		//						   <- esp
		//
		encoding = UNWIND_X86_MODE_EBP_FRAME;
		
		// find save location of farthest register from ebp
		int furthestCfaOffset = 0;
		if ( ebxSaved & (cfaOffsetEBX < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetEBX;
		if ( ecxSaved & (cfaOffsetECX < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetECX;
		if ( edxSaved & (cfaOffsetEDX < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetEDX;
		if ( ediSaved & (cfaOffsetEDI < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetEDI;
		if ( esiSaved & (cfaOffsetESI < furthestCfaOffset) )
			furthestCfaOffset = cfaOffsetESI;
		
		if ( furthestCfaOffset == 0 ) {
			// no registers saved, nothing more to encode
			return encoding;
		}
		
		// add stack offset to encoding
		int ebpOffset = furthestCfaOffset + 8;
		int encodedOffset = ebpOffset/(-4);
		if ( encodedOffset > 255 ) {
			strcpy(warningBuffer, "offset of saved registers too far to encode");
			return UNWIND_X86_MODE_DWARF;
		}
		encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_EBP_FRAME_OFFSET));
		
		// add register saved from each stack location
		bool encodingFailure = false;
		if ( ebxSaved )
			encoding |= getEBPEncodedRegister(UNW_X86_EBX, cfaOffsetEBX - furthestCfaOffset, encodingFailure);
		if ( ecxSaved )
			encoding |= getEBPEncodedRegister(UNW_X86_ECX, cfaOffsetECX - furthestCfaOffset, encodingFailure);
		if ( edxSaved )
			encoding |= getEBPEncodedRegister(UNW_X86_EDX, cfaOffsetEDX - furthestCfaOffset, encodingFailure);
		if ( ediSaved )
			encoding |= getEBPEncodedRegister(UNW_X86_EDI, cfaOffsetEDI - furthestCfaOffset, encodingFailure);
		if ( esiSaved )
			encoding |= getEBPEncodedRegister(UNW_X86_ESI, cfaOffsetESI - furthestCfaOffset, encodingFailure);
		
		if ( encodingFailure ){
			strcpy(warningBuffer, "saved registers not contiguous");
			return UNWIND_X86_MODE_DWARF;
		}

		return encoding;
	}
	else {
		//		|              |
		//		+--------------+   <- CFA
		//		|   ret addr   |
		//		+--------------+
		//		|  saved reg1  |
		//		+--------------+   <- CFA - 8
		//		|  saved reg2  |
		//		+--------------+   <- CFA - 12
		//		|  saved reg3  |
		//		+--------------+   <- CFA - 16
		//		|  saved reg4  |
		//		+--------------+   <- CFA - 20
		//		|  saved reg5  |
		//		+--------------+   <- CFA - 24
		//		|  saved reg6  |
		//		+--------------+   <- CFA - 28
		//		|              |
		//						   <- esp
		//

		// for ESP based frames we need to encode stack size in unwind info
		encoding = UNWIND_X86_MODE_STACK_IMMD;
		uint64_t stackValue = prolog.cfaRegisterOffset / 4;
		uint32_t stackAdjust = 0;
		bool immedStackSize = true;
		const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_FRAMELESS_STACK_SIZE);
		if ( stackValue > stackMaxImmedValue ) {
			// stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
			pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;		
			uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
			stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/4;
			stackValue = functionContentAdjustStackIns - funcAddr;
			immedStackSize = false;
			if ( stackAdjust > 7 ) {
				strcpy(warningBuffer, "stack subq instruction is too different from dwarf stack size");
				return UNWIND_X86_MODE_DWARF;
			}
			encoding = UNWIND_X86_MODE_STACK_IND;
		}	
		
		
		// validate that saved registers are all within 6 slots abutting return address
		int registers[6];
		for (int i=0; i < 6;++i)
			registers[i] = 0;
		if ( ebxSaved ) {
			if ( cfaOffsetEBX < -28 ) {
				strcpy(warningBuffer, "ebx is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetEBX+28)/4] = UNWIND_X86_REG_EBX;
		}
		if ( ecxSaved ) {
			if ( cfaOffsetECX < -28 ) {
				strcpy(warningBuffer, "ecx is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetECX+28)/4] = UNWIND_X86_REG_ECX;
		}
		if ( edxSaved ) {
			if ( cfaOffsetEDX < -28 ) {
				strcpy(warningBuffer, "edx is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetEDX+28)/4] = UNWIND_X86_REG_EDX;
		}
		if ( ediSaved ) {
			if ( cfaOffsetEDI < -28 ) {
				strcpy(warningBuffer, "edi is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetEDI+28)/4] = UNWIND_X86_REG_EDI;
		}
		if ( esiSaved ) {
			if ( cfaOffsetESI < -28 ) {
				strcpy(warningBuffer, "esi is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetESI+28)/4] = UNWIND_X86_REG_ESI;
		}
		if ( ebpSaved ) {
			if ( cfaOffsetEBP < -28 ) {
				strcpy(warningBuffer, "ebp is saved too far from return address");
				return UNWIND_X86_MODE_DWARF;
			}
			registers[(cfaOffsetEBP+28)/4] = UNWIND_X86_REG_EBP;
		}
		
		// validate that saved registers are contiguous and abut return address on stack
		for (int i=0; i < saveRegisterCount; ++i) {
			if ( registers[5-i] == 0 ) {
				strcpy(warningBuffer, "registers not save contiguously in stack");
				return UNWIND_X86_MODE_DWARF;
			}
		}
				
		// encode register permutation
		// the 10-bits are encoded differently depending on the number of registers saved
		int renumregs[6];
		for (int i=6-saveRegisterCount; i < 6; ++i) {
			int countless = 0;
			for (int j=6-saveRegisterCount; j < i; ++j) {
				if ( registers[j] < registers[i] )
					++countless;
			}
			renumregs[i] = registers[i] - countless -1;
		}
		uint32_t permutationEncoding = 0;
		switch ( saveRegisterCount ) {
			case 6:
				permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
				break;
			case 5:
				permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
				break;
			case 4:
				permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
				break;
			case 3:
				permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
				break;
			case 2:
				permutationEncoding |= (5*renumregs[4] + renumregs[5]);
				break;
			case 1:
				permutationEncoding |= (renumregs[5]);
				break;
		}
		
		encoding |= (stackValue << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_SIZE));
		encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_ADJUST));
		encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_COUNT));
		encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION));
		return encoding;
	}
}





} // namespace lldb_private


#endif // __DWARF_INSTRUCTIONS_HPP__




OpenPOWER on IntegriCloud