1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
//===-- EmulateInstructionARM.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "EmulateInstructionARM.h"
#include "ARMUtils.h"
using namespace lldb;
using namespace lldb_private;
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_MODE_MASK (0x0000001fu)
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_F (1u << 6)
#define MASK_CPSR_I (1u << 7)
#define MASK_CPSR_A (1u << 8)
#define MASK_CPSR_E (1u << 9)
#define MASK_CPSR_GE_MASK (0x000f0000u)
#define MASK_CPSR_J (1u << 24)
#define MASK_CPSR_Q (1u << 27)
#define MASK_CPSR_V (1u << 28)
#define MASK_CPSR_C (1u << 29)
#define MASK_CPSR_Z (1u << 30)
#define MASK_CPSR_N (1u << 31)
#define ARMv4 (1u << 0)
#define ARMv4T (1u << 1)
#define ARMv5T (1u << 2)
#define ARMv5TE (1u << 3)
#define ARMv5TEJ (1u << 4)
#define ARMv6 (1u << 5)
#define ARMv6K (1u << 6)
#define ARMv6T2 (1u << 7)
#define ARMv7 (1u << 8)
#define ARMv8 (1u << 8)
#define ARMvAll (0xffffffffu)
typedef enum
{
eEncodingA1,
eEncodingA2,
eEncodingA3,
eEncodingA4,
eEncodingA5,
eEncodingT1,
eEncodingT2,
eEncodingT3,
eEncodingT4,
eEncodingT5,
} ARMEncoding;
typedef enum
{
eSize16,
eSize32
} ARMInstrSize;
// Typedef for the callback function used during the emulation.
// Pass along (ARMEncoding)encoding as the callback data.
typedef bool (*EmulateCallback) (EmulateInstructionARM *emulator, ARMEncoding encoding);
typedef struct
{
uint32_t mask;
uint32_t value;
uint32_t variants;
ARMEncoding encoding;
ARMInstrSize size;
EmulateCallback callback;
const char *name;
} ARMOpcode;
static bool
EmulateARMPushEncoding (EmulateInstructionARM *emulator, ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
NullCheckIfThumbEE(13);
address = SP - 4*BitCount(registers);
for (i = 0 to 14)
{
if (registers<i> == ’1’)
{
if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1
MemA[address,4] = bits(32) UNKNOWN;
else
MemA[address,4] = R[i];
address = address + 4;
}
}
if (registers<15> == ’1’) // Only possible for encoding A1 or A2
MemA[address,4] = PCStoreValue();
SP = SP - 4*BitCount(registers);
}
#endif
bool success = false;
const uint32_t opcode = emulator->OpcodeAsUnsigned (&success);
if (!success)
return false;
if (emulator->ConditionPassed())
{
const uint32_t addr_byte_size = emulator->GetAddressByteSize();
const addr_t sp = emulator->ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t registers = 0;
uint32_t t; // UInt(Rt)
switch (encoding) {
case eEncodingT2:
// Ignore bits 15 & 13.
registers = EmulateInstruction::UnsignedBits (opcode, 15, 0) & ~0xa000;
// if BitCount(registers) < 2 then UNPREDICTABLE;
if (BitCount(registers) < 2)
return false;
break;
case eEncodingT3:
t = EmulateInstruction::UnsignedBits (opcode, 15, 12);
// if BadReg(t) then UNPREDICTABLE;
if (BadReg(t))
return false;
registers = (1u << t);
break;
case eEncodingA1:
registers = EmulateInstruction::UnsignedBits (opcode, 15, 0);
break;
case eEncodingA2:
t = EmulateInstruction::UnsignedBits (opcode, 15, 12);
// if t == 13 then UNPREDICTABLE;
if (t == dwarf_sp)
return false;
registers = (1u << t);
break;
}
addr_t sp_offset = addr_byte_size * EmulateInstruction::BitCount (registers);
addr_t addr = sp - sp_offset;
uint32_t i;
EmulateInstruction::Context context = { EmulateInstruction::eContextPushRegisterOnStack, eRegisterKindDWARF, 0, 0 };
for (i=0; i<15; ++i)
{
if (EmulateInstruction::BitIsSet (registers, 1u << i))
{
context.arg1 = dwarf_r0 + i; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
uint32_t reg_value = emulator->ReadRegisterUnsigned(eRegisterKindDWARF, context.arg1, 0, &success);
if (!success)
return false;
if (!emulator->WriteMemoryUnsigned (context, addr, reg_value, addr_byte_size))
return false;
addr += addr_byte_size;
}
}
if (EmulateInstruction::BitIsSet (registers, 1u << 15))
{
context.arg1 = dwarf_pc; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
const uint32_t pc = emulator->ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
if (!success)
return false;
if (!emulator->WriteMemoryUnsigned (context, addr, pc + 8, addr_byte_size))
return false;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = sp_offset;
if (!emulator->WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
static ARMOpcode g_arm_opcodes[] =
{
{ 0xffff0000, 0xe8ad0000, ARMv6T2|ARMv7, eEncodingT2, eSize32, EmulateARMPushEncoding,
"PUSH<c> <registers> ; <registers> contains more than one register" },
{ 0xffff0fff, 0xf84d0d04, ARMv6T2|ARMv7, eEncodingT3, eSize32, EmulateARMPushEncoding,
"PUSH<c> <registers> ; <registers> contains one register, <Rt>" },
{ 0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, eSize32, EmulateARMPushEncoding,
"PUSH<c> <registers> ; <registers> contains more than one register" },
{ 0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, eSize32, EmulateARMPushEncoding,
"PUSH<c> <registers> ; <registers> contains one register, <Rt>" }
};
static const size_t k_num_arm_opcodes = sizeof(g_arm_opcodes)/sizeof(ARMOpcode);
bool
EmulateInstructionARM::ReadInstruction ()
{
bool success = false;
m_inst_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, 0, &success);
if (success)
{
addr_t pc = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success);
if (success)
{
Context read_inst_context = {eContextReadOpcode, 0, 0};
if (m_inst_cpsr & MASK_CPSR_T)
{
m_inst_mode = eModeThumb;
uint32_t thumb_opcode = ReadMemoryUnsigned(read_inst_context, pc, 2, 0, &success);
if (success)
{
if ((m_inst.opcode.inst16 & 0xe000) != 0xe000 || ((m_inst.opcode.inst16 & 0x1800u) == 0))
{
m_inst.opcode_type = eOpcode16;
m_inst.opcode.inst16 = thumb_opcode;
}
else
{
m_inst.opcode_type = eOpcode32;
m_inst.opcode.inst32 = (thumb_opcode << 16) | ReadMemoryUnsigned(read_inst_context, pc + 2, 2, 0, &success);
}
}
}
else
{
m_inst_mode = eModeARM;
m_inst.opcode_type = eOpcode32;
m_inst.opcode.inst32 = ReadMemoryUnsigned(read_inst_context, pc, 4, 0, &success);
}
}
}
if (!success)
{
m_inst_mode = eModeInvalid;
m_inst_pc = LLDB_INVALID_ADDRESS;
}
return success;
}
uint32_t
EmulateInstructionARM::CurrentCond ()
{
switch (m_inst_mode)
{
default:
case eModeInvalid:
break;
case eModeARM:
return UnsignedBits(m_inst.opcode.inst32, 31, 28);
case eModeThumb:
return 0x0000000Eu; // Return always for now, we need to handl IT instructions later
}
return UINT32_MAX; // Return invalid value
}
bool
EmulateInstructionARM::ConditionPassed ()
{
if (m_inst_cpsr == 0)
return false;
const uint32_t cond = CurrentCond ();
if (cond == UINT32_MAX)
return false;
bool result = false;
switch (UnsignedBits(cond, 3, 1))
{
case 0: result = (m_inst_cpsr & MASK_CPSR_Z) != 0; break;
case 1: result = (m_inst_cpsr & MASK_CPSR_C) != 0; break;
case 2: result = (m_inst_cpsr & MASK_CPSR_N) != 0; break;
case 3: result = (m_inst_cpsr & MASK_CPSR_V) != 0; break;
case 4: result = ((m_inst_cpsr & MASK_CPSR_C) != 0) && ((m_inst_cpsr & MASK_CPSR_Z) == 0); break;
case 5:
{
bool n = (m_inst_cpsr & MASK_CPSR_N);
bool v = (m_inst_cpsr & MASK_CPSR_V);
result = n == v;
}
break;
case 6:
{
bool n = (m_inst_cpsr & MASK_CPSR_N);
bool v = (m_inst_cpsr & MASK_CPSR_V);
result = n == v && ((m_inst_cpsr & MASK_CPSR_Z) == 0);
}
break;
case 7:
result = true;
break;
}
if (cond & 1)
result = !result;
return result;
}
bool
EmulateInstructionARM::EvaluateInstruction ()
{
return false;
}
|