1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
|
//===-- EmulateInstructionARM.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "EmulateInstructionARM.h"
#include "lldb/Core/ConstString.h"
#include "ARMDefines.h"
#include "ARMUtils.h"
#include "ARM_DWARF_Registers.h"
#include "llvm/Support/MathExtras.h" // for SignExtend32 template function
// and CountTrailingZeros_32 function
using namespace lldb;
using namespace lldb_private;
// A8.6.50
// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
static unsigned short CountITSize(unsigned ITMask) {
// First count the trailing zeros of the IT mask.
unsigned TZ = llvm::CountTrailingZeros_32(ITMask);
if (TZ > 3)
{
printf("Encoding error: IT Mask '0000'\n");
return 0;
}
return (4 - TZ);
}
// Init ITState. Note that at least one bit is always 1 in mask.
bool ITSession::InitIT(unsigned short bits7_0)
{
ITCounter = CountITSize(Bits32(bits7_0, 3, 0));
if (ITCounter == 0)
return false;
// A8.6.50 IT
unsigned short FirstCond = Bits32(bits7_0, 7, 4);
if (FirstCond == 0xF)
{
printf("Encoding error: IT FirstCond '1111'\n");
return false;
}
if (FirstCond == 0xE && ITCounter != 1)
{
printf("Encoding error: IT FirstCond '1110' && Mask != '1000'\n");
return false;
}
ITState = bits7_0;
return true;
}
// Update ITState if necessary.
void ITSession::ITAdvance()
{
assert(ITCounter);
--ITCounter;
if (ITCounter == 0)
ITState = 0;
else
{
unsigned short NewITState4_0 = Bits32(ITState, 4, 0) << 1;
SetBits32(ITState, 4, 0, NewITState4_0);
}
}
// Return true if we're inside an IT Block.
bool ITSession::InITBlock()
{
return ITCounter != 0;
}
// Get condition bits for the current thumb instruction.
uint32_t ITSession::GetCond()
{
return Bits32(ITState, 7, 4);
}
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
#define ARMv4 (1u << 0)
#define ARMv4T (1u << 1)
#define ARMv5T (1u << 2)
#define ARMv5TE (1u << 3)
#define ARMv5TEJ (1u << 4)
#define ARMv6 (1u << 5)
#define ARMv6K (1u << 6)
#define ARMv6T2 (1u << 7)
#define ARMv7 (1u << 8)
#define ARMv8 (1u << 9)
#define ARMvAll (0xffffffffu)
#define ARMV4T_ABOVE (ARMv4T|ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv8)
#define ARMV5_ABOVE (ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv8)
#define ARMV6T2_ABOVE (ARMv6T2|ARMv7|ARMv8)
void
EmulateInstructionARM::Initialize ()
{
}
void
EmulateInstructionARM::Terminate ()
{
}
// Push Multiple Registers stores multiple registers to the stack, storing to
// consecutive memory locations ending just below the address in SP, and updates
// SP to point to the start of the stored data.
bool
EmulateInstructionARM::EmulatePush (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
NullCheckIfThumbEE(13);
address = SP - 4*BitCount(registers);
for (i = 0 to 14)
{
if (registers<i> == ’1’)
{
if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1
MemA[address,4] = bits(32) UNKNOWN;
else
MemA[address,4] = R[i];
address = address + 4;
}
}
if (registers<15> == ’1’) // Only possible for encoding A1 or A2
MemA[address,4] = PCStoreValue();
SP = SP - 4*BitCount(registers);
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t registers = 0;
uint32_t Rt; // the source register
switch (encoding) {
case eEncodingT1:
registers = Bits32(opcode, 7, 0);
// The M bit represents LR.
if (Bits32(opcode, 8, 8))
registers |= (1u << 14);
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount(registers) < 1)
return false;
break;
case eEncodingT2:
// Ignore bits 15 & 13.
registers = Bits32(opcode, 15, 0) & ~0xa000;
// if BitCount(registers) < 2 then UNPREDICTABLE;
if (BitCount(registers) < 2)
return false;
break;
case eEncodingT3:
Rt = Bits32(opcode, 15, 12);
// if BadReg(t) then UNPREDICTABLE;
if (BadReg(Rt))
return false;
registers = (1u << Rt);
break;
case eEncodingA1:
registers = Bits32(opcode, 15, 0);
// Instead of return false, let's handle the following case as well,
// which amounts to pushing one reg onto the full descending stacks.
// if BitCount(register_list) < 2 then SEE STMDB / STMFD;
break;
case eEncodingA2:
Rt = Bits32(opcode, 15, 12);
// if t == 13 then UNPREDICTABLE;
if (Rt == dwarf_sp)
return false;
registers = (1u << Rt);
break;
default:
return false;
}
addr_t sp_offset = addr_byte_size * BitCount (registers);
addr_t addr = sp - sp_offset;
uint32_t i;
EmulateInstruction::Context context = { EmulateInstruction::eContextPushRegisterOnStack, eRegisterKindDWARF, 0, 0 };
for (i=0; i<15; ++i)
{
if (BitIsSet (registers, 1u << i))
{
context.arg1 = dwarf_r0 + i; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
uint32_t reg_value = ReadRegisterUnsigned(eRegisterKindDWARF, context.arg1, 0, &success);
if (!success)
return false;
if (!WriteMemoryUnsigned (context, addr, reg_value, addr_byte_size))
return false;
addr += addr_byte_size;
}
}
if (BitIsSet (registers, 1u << 15))
{
context.arg1 = dwarf_pc; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
if (!success)
return false;
if (!WriteMemoryUnsigned (context, addr, pc + 8, addr_byte_size))
return false;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = -sp_offset;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
// Pop Multiple Registers loads multiple registers from the stack, loading from
// consecutive memory locations staring at the address in SP, and updates
// SP to point just above the loaded data.
bool
EmulateInstructionARM::EmulatePop (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); NullCheckIfThumbEE(13);
address = SP;
for i = 0 to 14
if registers<i> == ‘1’ then
R[i} = if UnalignedAllowed then MemU[address,4] else MemA[address,4]; address = address + 4;
if registers<15> == ‘1’ then
if UnalignedAllowed then
LoadWritePC(MemU[address,4]);
else
LoadWritePC(MemA[address,4]);
if registers<13> == ‘0’ then SP = SP + 4*BitCount(registers);
if registers<13> == ‘1’ then SP = bits(32) UNKNOWN;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t registers = 0;
uint32_t Rt; // the destination register
switch (encoding) {
case eEncodingT1:
registers = Bits32(opcode, 7, 0);
// The P bit represents PC.
if (Bits32(opcode, 8, 8))
registers |= (1u << 15);
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount(registers) < 1)
return false;
break;
case eEncodingT2:
// Ignore bit 13.
registers = Bits32(opcode, 15, 0) & ~0x2000;
// if BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if (BitCount(registers) < 2 || (Bits32(opcode, 15, 15) && Bits32(opcode, 14, 14)))
return false;
break;
case eEncodingT3:
Rt = Bits32(opcode, 15, 12);
// if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
if (Rt == dwarf_sp)
return false;
registers = (1u << Rt);
break;
case eEncodingA1:
registers = Bits32(opcode, 15, 0);
// Instead of return false, let's handle the following case as well,
// which amounts to popping one reg from the full descending stacks.
// if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
// if registers<13> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;
if (Bits32(opcode, 13, 13))
return false;
break;
case eEncodingA2:
Rt = Bits32(opcode, 15, 12);
// if t == 13 then UNPREDICTABLE;
if (Rt == dwarf_sp)
return false;
registers = (1u << Rt);
break;
default:
return false;
}
addr_t sp_offset = addr_byte_size * BitCount (registers);
addr_t addr = sp;
uint32_t i, data;
EmulateInstruction::Context context = { EmulateInstruction::eContextPopRegisterOffStack, eRegisterKindDWARF, 0, 0 };
for (i=0; i<15; ++i)
{
if (BitIsSet (registers, 1u << i))
{
context.arg1 = dwarf_r0 + i; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
data = ReadMemoryUnsigned(context, addr, 4, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, context.arg1, data))
return false;
addr += addr_byte_size;
}
}
if (BitIsSet (registers, 1u << 15))
{
context.arg1 = dwarf_pc; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
data = ReadMemoryUnsigned(context, addr, 4, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned(context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, data))
return false;
addr += addr_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = sp_offset;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
return false;
}
return true;
}
// Set r7 or ip to point to saved value residing within the stack.
// ADD (SP plus immediate)
bool
EmulateInstructionARM::EmulateAddRdSPImmediate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, imm32, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t Rd; // the destination register
uint32_t imm32;
switch (encoding) {
case eEncodingT1:
Rd = 7;
imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32)
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp + sp_offset; // a pointer to the stack area
EmulateInstruction::Context context = { EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
sp_offset };
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, addr))
return false;
}
return true;
}
// Set r7 or ip to the current stack pointer.
// MOV (register)
bool
EmulateInstructionARM::EmulateMovRdSP (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged
}
#endif
bool success = false;
//const uint32_t opcode = OpcodeAsUnsigned (&success);
//if (!success)
// return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t Rd; // the destination register
switch (encoding) {
case eEncodingT1:
Rd = 7;
break;
case eEncodingA1:
Rd = 12;
break;
default:
return false;
}
EmulateInstruction::Context context = { EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
0 };
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, sp))
return false;
}
return true;
}
// Move from high register (r8-r15) to low register (r0-r7).
// MOV (register)
bool
EmulateInstructionARM::EmulateMovLowHigh (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
uint32_t Rm; // the source register
uint32_t Rd; // the destination register
switch (encoding) {
case eEncodingT1:
Rm = Bits32(opcode, 6, 3);
Rd = Bits32(opcode, 2, 1); // bits(7) == 0
break;
default:
return false;
}
int32_t reg_value = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + Rm, 0, &success);
if (!success)
return false;
// The context specifies that Rm is to be moved into Rd.
EmulateInstruction::Context context = { EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindDWARF,
dwarf_r0 + Rm,
0 };
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, reg_value))
return false;
}
return true;
}
// PC relative immediate load into register, possibly followed by ADD (SP plus register).
// LDR (literal)
bool
EmulateInstructionARM::EmulateLDRRdPCRelative (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then
if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = ‘00’ then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8*UInt(address<1:0>));
else
R[t] = bits(32) UNKNOWN;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
if (!success)
return false;
// PC relative immediate load context
EmulateInstruction::Context context = {EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC,
0};
uint32_t Rd; // the destination register
uint32_t imm32; // immediate offset from the PC
addr_t addr; // the PC relative address
uint32_t data; // the literal data value from the PC relative load
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 10, 8);
imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32);
addr = pc + 4 + imm32;
context.arg2 = 4 + imm32;
break;
default:
return false;
}
data = ReadMemoryUnsigned(context, addr, 4, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, data))
return false;
}
return true;
}
// An add operation to adjust the SP.
// ADD (SP plus immediate)
bool
EmulateInstructionARM::EmulateAddSPImmediate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, imm32, ‘0’);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t imm32; // the immediate operand
switch (encoding) {
case eEncodingT2:
imm32 = ThumbImmScaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp + sp_offset; // the adjusted stack pointer value
EmulateInstruction::Context context = { EmulateInstruction::eContextAdjustStackPointer,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
sp_offset };
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, addr))
return false;
}
return true;
}
// An add operation to adjust the SP.
// ADD (SP plus register)
bool
EmulateInstructionARM::EmulateAddSPRm (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(SP, shifted, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t Rm; // the second operand
switch (encoding) {
case eEncodingT2:
Rm = Bits32(opcode, 6, 3);
break;
default:
return false;
}
int32_t reg_value = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + Rm, 0, &success);
if (!success)
return false;
addr_t addr = (int32_t)sp + reg_value; // the adjusted stack pointer value
EmulateInstruction::Context context = { EmulateInstruction::eContextAdjustStackPointer,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
reg_value };
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, addr))
return false;
}
return true;
}
// Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine
// at a PC-relative address, and changes instruction set from ARM to Thumb, or
// from Thumb to ARM.
// BLX (immediate)
bool
EmulateInstructionARM::EmulateBLXImmediate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet_ARM then
LR = PC - 4;
else
LR = PC<31:1> : '1';
if targetInstrSet == InstrSet_ARM then
targetAddress = Align(PC,4) + imm32;
else
targetAddress = PC + imm32;
SelectInstrSet(targetInstrSet);
BranchWritePC(targetAddress);
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
EmulateInstruction::Context context = { EmulateInstruction::eContextRelativeBranchImmediate, 0, 0, 0};
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
addr_t lr; // next instruction address
addr_t target; // target address
if (!success)
return false;
int32_t imm32; // PC-relative offset
switch (encoding) {
case eEncodingT2:
{
lr = (pc + 4) | 1u; // return address
uint32_t S = Bits32(opcode, 26, 26);
uint32_t imm10H = Bits32(opcode, 25, 16);
uint32_t J1 = Bits32(opcode, 13, 13);
uint32_t J2 = Bits32(opcode, 11, 11);
uint32_t imm10L = Bits32(opcode, 10, 1);
uint32_t I1 = !(J1 ^ S);
uint32_t I2 = !(J2 ^ S);
uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10H << 12) + (imm10L << 2);
imm32 = llvm::SignExtend32<25>(imm25);
target = (pc & 0xfffffffc) + 4 + imm32;
context.arg1 = eModeARM; // target instruction set
context.arg2 = 4 + imm32; // signed offset
break;
}
case eEncodingA2:
lr = pc + 4; // return address
imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2 | Bits32(opcode, 24, 24) << 1);
target = pc + 8 + imm32;
context.arg1 = eModeThumb; // target instruction set
context.arg2 = 8 + imm32; // signed offset
break;
default:
return false;
}
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
return false;
}
return true;
}
// Branch with Link and Exchange (register) calls a subroutine at an address and
// instruction set specified by a register.
// BLX (register)
bool
EmulateInstructionARM::EmulateBLXRm (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
target = R[m];
if CurrentInstrSet() == InstrSet_ARM then
next_instr_addr = PC - 4;
LR = next_instr_addr;
else
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : ‘1’;
BXWritePC(target);
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
EmulateInstruction::Context context = { EmulateInstruction::eContextAbsoluteBranchRegister, 0, 0, 0};
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
addr_t lr; // next instruction address
addr_t target; // target address
if (!success)
return false;
uint32_t Rm; // the register with the target address
switch (encoding) {
case eEncodingT1:
lr = (pc + 2) | 1u; // return address
Rm = Bits32(opcode, 6, 3);
// if m == 15 then UNPREDICTABLE;
if (Rm == 15)
return false;
target = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + Rm, 0, &success);
break;
case eEncodingA1:
lr = pc + 4; // return address
Rm = Bits32(opcode, 3, 0);
// if m == 15 then UNPREDICTABLE;
if (Rm == 15)
return false;
target = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + Rm, 0, &success);
break;
default:
return false;
}
bool toThumb;
if (BitIsSet(target, 0))
toThumb = true;
else if (BitIsClear(target, 1))
toThumb = false;
else
return false; // address<1:0> == ‘10’ => UNPREDICTABLE
context.arg0 = eRegisterKindDWARF;
context.arg1 = dwarf_r0 + Rm;
context.arg2 = toThumb ? eModeThumb : eModeARM;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
return false;
}
return true;
}
// Set r7 to point to some ip offset.
// SUB (immediate)
bool
EmulateInstructionARM::EmulateSubR7IPImmediate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), ‘1’);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t ip = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r12, 0, &success);
if (!success)
return false;
uint32_t imm32;
switch (encoding) {
case eEncodingA1:
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t ip_offset = imm32;
addr_t addr = ip - ip_offset; // the adjusted ip value
EmulateInstruction::Context context = { EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindDWARF,
dwarf_r12,
-ip_offset };
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r7, addr))
return false;
}
return true;
}
// Set ip to point to some stack offset.
// SUB (SP minus immediate)
bool
EmulateInstructionARM::EmulateSubIPSPImmediate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), ‘1’);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t imm32;
switch (encoding) {
case eEncodingA1:
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp - sp_offset; // the adjusted stack pointer value
EmulateInstruction::Context context = { EmulateInstruction::eContextRegisterPlusOffset,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
-sp_offset };
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r12, addr))
return false;
}
return true;
}
// A sub operation to adjust the SP -- allocate space for local storage.
bool
EmulateInstructionARM::EmulateSubSPImmdiate (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), ‘1’);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t imm32;
switch (encoding) {
case eEncodingT1:
imm32 = ThumbImmScaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
case eEncodingT2:
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
break;
case eEncodingT3:
imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
break;
case eEncodingA1:
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp - sp_offset; // the adjusted stack pointer value
EmulateInstruction::Context context = { EmulateInstruction::eContextAdjustStackPointer,
eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP,
-sp_offset };
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, addr))
return false;
}
return true;
}
// A store operation to the stack that also updates the SP.
bool
EmulateInstructionARM::EmulateSTRRtSP (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
if wback then R[n] = offset_addr;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
uint32_t Rt; // the source register
uint32_t imm12;
switch (encoding) {
case eEncodingA1:
Rt = Bits32(opcode, 15, 12);
imm12 = Bits32(opcode, 11, 0);
break;
default:
return false;
}
addr_t sp_offset = imm12;
addr_t addr = sp - sp_offset;
EmulateInstruction::Context context = { EmulateInstruction::eContextPushRegisterOnStack, eRegisterKindDWARF, 0, 0 };
if (Rt != 15)
{
context.arg1 = dwarf_r0 + Rt; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
uint32_t reg_value = ReadRegisterUnsigned(eRegisterKindDWARF, context.arg1, 0, &success);
if (!success)
return false;
if (!WriteMemoryUnsigned (context, addr, reg_value, addr_byte_size))
return false;
}
else
{
context.arg1 = dwarf_pc; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
if (!success)
return false;
if (!WriteMemoryUnsigned (context, addr, pc + 8, addr_byte_size))
return false;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = -sp_offset;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
// Vector Push stores multiple extension registers to the stack.
// It also updates SP to point to the start of the stored data.
bool
EmulateInstructionARM::EmulateVPUSH (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
address = SP - imm32;
SP = SP - imm32;
if single_regs then
for r = 0 to regs-1
MemA[address,4] = S[d+r]; address = address+4;
else
for r = 0 to regs-1
// Store as two word-aligned words in the correct order for current endianness.
MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
address = address+8;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
bool single_regs;
uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
uint32_t imm32; // stack offset
uint32_t regs; // number of registers
switch (encoding) {
case eEncodingT1:
case eEncodingA1:
single_regs = false;
d = Bits32(opcode, 22, 22) << 4 | Bits32(opcode, 15, 12);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
// If UInt(imm8) is odd, see "FSTMX".
regs = Bits32(opcode, 7, 0) / 2;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
case eEncodingT2:
case eEncodingA2:
single_regs = true;
d = Bits32(opcode, 15, 12) << 1 | Bits32(opcode, 22, 22);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
regs = Bits32(opcode, 7, 0);
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
default:
return false;
}
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
addr_t sp_offset = imm32;
addr_t addr = sp - sp_offset;
uint32_t i;
EmulateInstruction::Context context = { EmulateInstruction::eContextPushRegisterOnStack, eRegisterKindDWARF, 0, 0 };
for (i=d; i<regs; ++i)
{
context.arg1 = start_reg + i; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
// uint64_t to accommodate 64-bit registers.
uint64_t reg_value = ReadRegisterUnsigned(eRegisterKindDWARF, context.arg1, 0, &success);
if (!success)
return false;
if (!WriteMemoryUnsigned (context, addr, reg_value, reg_byte_size))
return false;
addr += reg_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = -sp_offset;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
// Vector Pop loads multiple extension registers from the stack.
// It also updates SP to point just above the loaded data.
bool
EmulateInstructionARM::EmulateVPOP (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
address = SP;
SP = SP + imm32;
if single_regs then
for r = 0 to regs-1
S[d+r] = MemA[address,4]; address = address+4;
else
for r = 0 to regs-1
word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian() then word1:word2 else word2:word1;
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success);
if (!success)
return false;
bool single_regs;
uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
uint32_t imm32; // stack offset
uint32_t regs; // number of registers
switch (encoding) {
case eEncodingT1:
case eEncodingA1:
single_regs = false;
d = Bits32(opcode, 22, 22) << 4 | Bits32(opcode, 15, 12);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
// If UInt(imm8) is odd, see "FLDMX".
regs = Bits32(opcode, 7, 0) / 2;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
case eEncodingT2:
case eEncodingA2:
single_regs = true;
d = Bits32(opcode, 15, 12) << 1 | Bits32(opcode, 22, 22);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
regs = Bits32(opcode, 7, 0);
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
default:
return false;
}
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
addr_t sp_offset = imm32;
addr_t addr = sp;
uint32_t i;
uint64_t data; // uint64_t to accomodate 64-bit registers.
EmulateInstruction::Context context = { EmulateInstruction::eContextPopRegisterOffStack, eRegisterKindDWARF, 0, 0 };
for (i=d; i<regs; ++i)
{
context.arg1 = start_reg + i; // arg1 in the context is the DWARF register number
context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset
data = ReadMemoryUnsigned(context, addr, reg_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, context.arg1, data))
return false;
addr += reg_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.arg0 = eRegisterKindGeneric;
context.arg1 = LLDB_REGNUM_GENERIC_SP;
context.arg2 = sp_offset;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
return false;
}
return true;
}
// SVC (previously SWI)
bool
EmulateInstructionARM::EmulateSVC (ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
CallSupervisor();
}
#endif
bool success = false;
const uint32_t opcode = OpcodeAsUnsigned (&success);
if (!success)
return false;
if (ConditionPassed())
{
const uint32_t pc = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success);
addr_t lr; // next instruction address
if (!success)
return false;
uint32_t imm32; // the immediate constant
uint32_t mode; // ARM or Thumb mode
switch (encoding) {
case eEncodingT1:
lr = (pc + 2) | 1u; // return address
imm32 = Bits32(opcode, 7, 0);
mode = eModeThumb;
break;
case eEncodingA1:
lr = pc + 4; // return address
imm32 = Bits32(opcode, 23, 0);
mode = eModeARM;
break;
default:
return false;
}
EmulateInstruction::Context context = { EmulateInstruction::eContextSupervisorCall, mode, imm32, 0};
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
}
return true;
}
EmulateInstructionARM::ARMOpcode*
EmulateInstructionARM::GetARMOpcodeForInstruction (const uint32_t opcode)
{
static ARMOpcode
g_arm_opcodes[] =
{
//----------------------------------------------------------------------
// Prologue instructions
//----------------------------------------------------------------------
// push register(s)
{ 0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulatePush, "push <registers>" },
{ 0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, eSize32, &EmulateInstructionARM::EmulatePush, "push <register>" },
// set r7 to point to a stack offset
{ 0x0ffff000, 0x028d7000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateAddRdSPImmediate, "add r7, sp, #<const>" },
{ 0x0ffff000, 0x024c7000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateSubR7IPImmediate, "sub r7, ip, #<const>"},
// set ip to point to a stack offset
{ 0x0fffffff, 0x01a0c00d, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateMovRdSP, "mov ip, sp" },
{ 0x0ffff000, 0x028dc000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateAddRdSPImmediate, "add ip, sp, #<const>" },
{ 0x0ffff000, 0x024dc000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateSubIPSPImmediate, "sub ip, sp, #<const>"},
// adjust the stack pointer
{ 0x0ffff000, 0x024dd000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateSubSPImmdiate, "sub sp, sp, #<const>"},
// push one register
// if Rn == '1101' && imm12 == '000000000100' then SEE PUSH;
{ 0x0fff0000, 0x052d0000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateSTRRtSP, "str Rt, [sp, #-imm12]!" },
// vector push consecutive extension register(s)
{ 0x0fbf0f00, 0x0d2d0b00, ARMV6T2_ABOVE, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
{ 0x0fbf0f00, 0x0d2d0a00, ARMV6T2_ABOVE, eEncodingA2, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
//----------------------------------------------------------------------
// Epilogue instructions
//----------------------------------------------------------------------
// To resolve ambiguity, "blx <label>" should come before "bl <label>".
{ 0xfe000000, 0xfa000000, ARMV5_ABOVE, eEncodingA2, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
{ 0x0f000000, 0x0b000000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
{ 0x0ffffff0, 0x012fff30, ARMV5_ABOVE, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
{ 0x0fff0000, 0x08bd0000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulatePop, "pop <registers>"},
{ 0x0fff0fff, 0x049d0004, ARMvAll, eEncodingA2, eSize32, &EmulateInstructionARM::EmulatePop, "pop <register>"},
{ 0x0fbf0f00, 0x0cbd0b00, ARMV6T2_ABOVE, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
{ 0x0fbf0f00, 0x0cbd0a00, ARMV6T2_ABOVE, eEncodingA2, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
//----------------------------------------------------------------------
// Supervisor Call (previously Software Interrupt)
//----------------------------------------------------------------------
{ 0x0f000000, 0x0f000000, ARMvAll, eEncodingA1, eSize32, &EmulateInstructionARM::EmulateSVC, "svc #imm24"}
};
static const size_t k_num_arm_opcodes = sizeof(g_arm_opcodes)/sizeof(ARMOpcode);
for (size_t i=0; i<k_num_arm_opcodes; ++i)
{
if ((g_arm_opcodes[i].mask & opcode) == g_arm_opcodes[i].value)
return &g_arm_opcodes[i];
}
return NULL;
}
EmulateInstructionARM::ARMOpcode*
EmulateInstructionARM::GetThumbOpcodeForInstruction (const uint32_t opcode)
{
static ARMOpcode
g_thumb_opcodes[] =
{
//----------------------------------------------------------------------
// Prologue instructions
//----------------------------------------------------------------------
// push register(s)
{ 0xfffffe00, 0x0000b400, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulatePush, "push <registers>" },
{ 0xffff0000, 0xe92d0000, ARMv6T2|ARMv7, eEncodingT2, eSize32, &EmulateInstructionARM::EmulatePush, "push.w <registers>" },
{ 0xffff0fff, 0xf84d0d04, ARMv6T2|ARMv7, eEncodingT3, eSize32, &EmulateInstructionARM::EmulatePush, "push.w <register>" },
// move from high register to low register
{ 0xffffffc0, 0x00004640, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateMovLowHigh, "mov r0-r7, r8-r15" },
// set r7 to point to a stack offset
{ 0xffffff00, 0x0000af00, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateAddRdSPImmediate, "add r7, sp, #imm" },
{ 0xffffffff, 0x0000466f, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateMovRdSP, "mov r7, sp" },
// PC relative load into register (see also EmulateAddSPRm)
{ 0xfffff800, 0x00004800, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateLDRRdPCRelative, "ldr <Rd>, [PC, #imm]"},
// adjust the stack pointer
{ 0xffffff87, 0x00004485, ARMvAll, eEncodingT2, eSize16, &EmulateInstructionARM::EmulateAddSPRm, "add sp, <Rm>"},
{ 0xffffff80, 0x0000b080, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateSubSPImmdiate, "add sp, sp, #imm"},
{ 0xfbef8f00, 0xf1ad0d00, ARMv6T2|ARMv7, eEncodingT2, eSize32, &EmulateInstructionARM::EmulateSubSPImmdiate, "sub.w sp, sp, #<const>"},
{ 0xfbff8f00, 0xf2ad0d00, ARMv6T2|ARMv7, eEncodingT3, eSize32, &EmulateInstructionARM::EmulateSubSPImmdiate, "subw sp, sp, #imm12"},
// vector push consecutive extension register(s)
{ 0xffbf0f00, 0xed2d0b00, ARMv6T2|ARMv7, eEncodingT1, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
{ 0xffbf0f00, 0xed2d0a00, ARMv6T2|ARMv7, eEncodingT2, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
//----------------------------------------------------------------------
// Epilogue instructions
//----------------------------------------------------------------------
{ 0xffffff80, 0x0000b000, ARMvAll, eEncodingT2, eSize16, &EmulateInstructionARM::EmulateAddSPImmediate, "add sp, #imm"},
{ 0xffffff87, 0x00004780, ARMV5_ABOVE, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
// J1 == J2 == 1
{ 0xf800e801, 0xf000e800, ARMV5_ABOVE, eEncodingT2, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
{ 0xfffffe00, 0x0000bc00, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulatePop, "pop <registers>"},
{ 0xffff0000, 0xe8bd0000, ARMv6T2|ARMv7, eEncodingT2, eSize32, &EmulateInstructionARM::EmulatePop, "pop.w <registers>" },
{ 0xffff0fff, 0xf85d0d04, ARMv6T2|ARMv7, eEncodingT3, eSize32, &EmulateInstructionARM::EmulatePop, "pop.w <register>" },
{ 0xffbf0f00, 0xecbd0b00, ARMv6T2|ARMv7, eEncodingT1, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
{ 0xffbf0f00, 0xecbd0a00, ARMv6T2|ARMv7, eEncodingT2, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
//----------------------------------------------------------------------
// Supervisor Call (previously Software Interrupt)
//----------------------------------------------------------------------
{ 0xffffff00, 0x0000df00, ARMvAll, eEncodingT1, eSize16, &EmulateInstructionARM::EmulateSVC, "svc #imm8"}
};
const size_t k_num_thumb_opcodes = sizeof(g_thumb_opcodes)/sizeof(ARMOpcode);
for (size_t i=0; i<k_num_thumb_opcodes; ++i)
{
if ((g_thumb_opcodes[i].mask & opcode) == g_thumb_opcodes[i].value)
return &g_thumb_opcodes[i];
}
return NULL;
}
bool
EmulateInstructionARM::SetTargetTriple (const ConstString &triple)
{
m_arm_isa = 0;
const char *triple_cstr = triple.GetCString();
if (triple_cstr)
{
const char *dash = ::strchr (triple_cstr, '-');
if (dash)
{
std::string arch (triple_cstr, dash);
const char *arch_cstr = arch.c_str();
if (strcasecmp(arch_cstr, "armv4t") == 0)
m_arm_isa = ARMv4T;
else if (strcasecmp(arch_cstr, "armv4") == 0)
m_arm_isa = ARMv4;
else if (strcasecmp(arch_cstr, "armv5tej") == 0)
m_arm_isa = ARMv5TEJ;
else if (strcasecmp(arch_cstr, "armv5te") == 0)
m_arm_isa = ARMv5TE;
else if (strcasecmp(arch_cstr, "armv5t") == 0)
m_arm_isa = ARMv5T;
else if (strcasecmp(arch_cstr, "armv6k") == 0)
m_arm_isa = ARMv6K;
else if (strcasecmp(arch_cstr, "armv6") == 0)
m_arm_isa = ARMv6;
else if (strcasecmp(arch_cstr, "armv6t2") == 0)
m_arm_isa = ARMv6T2;
else if (strcasecmp(arch_cstr, "armv7") == 0)
m_arm_isa = ARMv7;
else if (strcasecmp(arch_cstr, "armv8") == 0)
m_arm_isa = ARMv8;
}
}
return m_arm_isa != 0;
}
bool
EmulateInstructionARM::ReadInstruction ()
{
bool success = false;
m_inst_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, 0, &success);
if (success)
{
addr_t pc = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success);
if (success)
{
Context read_inst_context = {eContextReadOpcode, 0, 0};
if (m_inst_cpsr & MASK_CPSR_T)
{
m_inst_mode = eModeThumb;
uint32_t thumb_opcode = ReadMemoryUnsigned(read_inst_context, pc, 2, 0, &success);
if (success)
{
if ((m_inst.opcode.inst16 & 0xe000) != 0xe000 || ((m_inst.opcode.inst16 & 0x1800u) == 0))
{
m_inst.opcode_type = eOpcode16;
m_inst.opcode.inst16 = thumb_opcode;
}
else
{
m_inst.opcode_type = eOpcode32;
m_inst.opcode.inst32 = (thumb_opcode << 16) | ReadMemoryUnsigned(read_inst_context, pc + 2, 2, 0, &success);
}
}
}
else
{
m_inst_mode = eModeARM;
m_inst.opcode_type = eOpcode32;
m_inst.opcode.inst32 = ReadMemoryUnsigned(read_inst_context, pc, 4, 0, &success);
}
}
}
if (!success)
{
m_inst_mode = eModeInvalid;
m_inst_pc = LLDB_INVALID_ADDRESS;
}
return success;
}
uint32_t
EmulateInstructionARM::CurrentCond ()
{
switch (m_inst_mode)
{
default:
case eModeInvalid:
break;
case eModeARM:
return UnsignedBits(m_inst.opcode.inst32, 31, 28);
case eModeThumb:
return 0x0000000Eu; // Return always for now, we need to handl IT instructions later
}
return UINT32_MAX; // Return invalid value
}
bool
EmulateInstructionARM::ConditionPassed ()
{
if (m_inst_cpsr == 0)
return false;
const uint32_t cond = CurrentCond ();
if (cond == UINT32_MAX)
return false;
bool result = false;
switch (UnsignedBits(cond, 3, 1))
{
case 0: result = (m_inst_cpsr & MASK_CPSR_Z) != 0; break;
case 1: result = (m_inst_cpsr & MASK_CPSR_C) != 0; break;
case 2: result = (m_inst_cpsr & MASK_CPSR_N) != 0; break;
case 3: result = (m_inst_cpsr & MASK_CPSR_V) != 0; break;
case 4: result = ((m_inst_cpsr & MASK_CPSR_C) != 0) && ((m_inst_cpsr & MASK_CPSR_Z) == 0); break;
case 5:
{
bool n = (m_inst_cpsr & MASK_CPSR_N);
bool v = (m_inst_cpsr & MASK_CPSR_V);
result = n == v;
}
break;
case 6:
{
bool n = (m_inst_cpsr & MASK_CPSR_N);
bool v = (m_inst_cpsr & MASK_CPSR_V);
result = n == v && ((m_inst_cpsr & MASK_CPSR_Z) == 0);
}
break;
case 7:
result = true;
break;
}
if (cond & 1)
result = !result;
return result;
}
bool
EmulateInstructionARM::EvaluateInstruction ()
{
return false;
}
|