1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
//===-- head_find.c ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file compiles into a dylib and can be used on darwin to find data that
// is contained in active malloc blocks. To use this make the project, then
// load the shared library in a debug session while you are stopped:
//
// (lldb) process load /path/to/libheap.dylib
//
// Now you can use the "find_pointer_in_heap" and "find_cstring_in_heap"
// functions in the expression parser.
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the pointer 0x112233000000:
//
// (lldb) expression find_pointer_in_heap (0x112233000000)
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the C string "hello" (as a substring, no
// NULL termination included):
//
// (lldb) expression find_cstring_in_heap ("hello")
//
// The results will be printed to the STDOUT of the inferior program.
//
//===----------------------------------------------------------------------===//
#include <assert.h>
#include <ctype.h>
#include <mach/mach.h>
#include <malloc/malloc.h>
#include <stdio.h>
#include <stdlib.h>
struct range_callback_info_t;
typedef void range_callback_t (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size);
typedef void zone_callback_t (void *info, const malloc_zone_t *zone);
typedef struct range_callback_info_tag
{
zone_callback_t *zone_callback;
range_callback_t *range_callback;
void *baton;
} range_callback_info_t;
typedef enum data_type
{
eDataTypeBytes,
eDataTypeCStr,
eDataTypeInteger
} data_type_t;
typedef struct range_contains_data_callback_info_tag
{
const uint8_t *data;
const size_t data_len;
const uint32_t align;
const data_type_t data_type;
uint32_t match_count;
} range_contains_data_callback_info_t;
static kern_return_t
task_peek (task_t task, vm_address_t remote_address, vm_size_t size, void **local_memory)
{
*local_memory = (void*) remote_address;
return KERN_SUCCESS;
}
static const void
foreach_zone_in_this_process (range_callback_info_t *info)
{
//printf ("foreach_zone_in_this_process ( info->zone_callback = %p, info->range_callback = %p, info->baton = %p)", info->zone_callback, info->range_callback, info->baton);
if (info == NULL || info->zone_callback == NULL)
return;
vm_address_t *zones = NULL;
unsigned int num_zones = 0;
kern_return_t err = malloc_get_all_zones (0, task_peek, &zones, &num_zones);
if (KERN_SUCCESS == err)
{
for (unsigned int i=0; i<num_zones; ++i)
{
info->zone_callback (info, (const malloc_zone_t *)zones[i]);
}
}
}
static void
range_callback (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size)
{
printf ("task = 0x%4.4x: baton = %p, type = %u, ptr_addr = 0x%llx + 0x%llu\n", task, baton, type, ptr_addr, ptr_size);
}
static void
ranges_callback (task_t task, void *baton, unsigned type, vm_range_t *ptrs, unsigned count)
{
range_callback_info_t *info = (range_callback_info_t *)baton;
while(count--) {
info->range_callback (task, info->baton, type, ptrs->address, ptrs->size);
ptrs++;
}
}
static void
enumerate_range_in_zone (void *baton, const malloc_zone_t *zone)
{
range_callback_info_t *info = (range_callback_info_t *)baton;
if (zone && zone->introspect)
zone->introspect->enumerator (mach_task_self(),
info,
MALLOC_PTR_IN_USE_RANGE_TYPE,
(vm_address_t)zone,
task_peek,
ranges_callback);
}
const void
foreach_range_in_this_process (range_callback_t *callback, void *baton)
{
range_callback_info_t info = { enumerate_range_in_zone, callback ? callback : range_callback, baton };
foreach_zone_in_this_process (&info);
}
static void
range_contains_ptr_callback (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size)
{
uint8_t *data = NULL;
range_contains_data_callback_info_t *data_info = (range_contains_data_callback_info_t *)baton;
if (data_info->data_len <= 0)
{
printf ("error: invalid data size: %zu\n", data_info->data_len);
}
else if (data_info->data_len > ptr_size)
{
// This block is too short to contain the data we are looking for...
return;
}
else if (task_peek (task, ptr_addr, ptr_size, (void **)&data) == KERN_SUCCESS)
{
assert (data);
const uint64_t end_addr = ptr_addr + ptr_size;
for (uint64_t addr = ptr_addr;
addr < end_addr && ((end_addr - addr) >= data_info->data_len);
addr += data_info->align, data += data_info->align)
{
if (memcmp (data_info->data, data, data_info->data_len) == 0)
{
++data_info->match_count;
printf ("0x%llx: ", addr);
uint32_t i;
switch (data_info->data_type)
{
case eDataTypeInteger:
{
// NOTE: little endian specific, but all darwin platforms are little endian now..
for (i=0; i<data_info->data_len; ++i)
printf (i ? "%2.2x" : "0x%2.2x", data[data_info->data_len - (i + 1)]);
}
break;
case eDataTypeBytes:
{
for (i=0; i<data_info->data_len; ++i)
printf (" %2.2x", data[i]);
}
break;
case eDataTypeCStr:
{
putchar ('"');
for (i=0; i<data_info->data_len; ++i)
{
if (isprint (data[i]))
putchar (data[i]);
else
printf ("\\x%2.2x", data[i]);
}
putchar ('"');
}
break;
}
printf (" found in malloc block 0x%llx + %llu (malloc_size = %llu)\n", ptr_addr, addr - ptr_addr, ptr_size);
}
}
}
else
{
printf ("0x%llx: error: couldn't read %llu bytes\n", ptr_addr, ptr_size);
}
}
typedef uint64_t MachMallocEventId;
enum MachMallocEventType
{
eMachMallocEventTypeAlloc = 2,
eMachMallocEventTypeDealloc = 4,
eMachMallocEventTypeOther = 1
};
struct MachMallocEvent
{
mach_vm_address_t m_base_address;
uint64_t m_size;
MachMallocEventType m_event_type;
MachMallocEventId m_event_id;
};
static void foundStackLog(mach_stack_logging_record_t record, void *context) {
*((bool*)context) = true;
}
bool
malloc_stack_logging_is_enabled ()
{
bool found = false;
__mach_stack_logging_enumerate_records(m_task, 0x0, foundStackLog, &found);
return found;
}
struct history_enumerator_impl_data
{
MachMallocEvent *buffer;
uint32_t *position;
uint32_t count;
};
static void
history_enumerator_impl(mach_stack_logging_record_t record, void* enum_obj)
{
history_enumerator_impl_data *data = (history_enumerator_impl_data*)enum_obj;
if (*data->position >= data->count)
return;
data->buffer[*data->position].m_base_address = record.address;
data->buffer[*data->position].m_size = record.argument;
data->buffer[*data->position].m_event_id = record.stack_identifier;
data->buffer[*data->position].m_event_type = record.type_flags == stack_logging_type_alloc ? eMachMallocEventTypeAlloc :
record.type_flags == stack_logging_type_dealloc ? eMachMallocEventTypeDealloc :
eMachMallocEventTypeOther;
*data->position+=1;
}
bool
MachTask::EnumerateMallocRecords (MachMallocEvent *event_buffer,
uint32_t buffer_size,
uint32_t *count)
{
return EnumerateMallocRecords(0,
event_buffer,
buffer_size,
count);
}
bool
MachTask::EnumerateMallocRecords (mach_vm_address_t address,
MachMallocEvent *event_buffer,
uint32_t buffer_size,
uint32_t *count)
{
if (!event_buffer || !count)
return false;
if (buffer_size == 0)
return false;
*count = 0;
history_enumerator_impl_data data = { event_buffer, count, buffer_size };
__mach_stack_logging_enumerate_records(m_task, address, history_enumerator_impl, &data);
return (*count > 0);
}
bool
MachTask::EnumerateMallocFrames (MachMallocEventId event_id,
mach_vm_address_t *function_addresses_buffer,
uint32_t buffer_size,
uint32_t *count)
{
if (!function_addresses_buffer || !count)
return false;
if (buffer_size == 0)
return false;
__mach_stack_logging_frames_for_uniqued_stack(m_task, event_id, &function_addresses_buffer[0], buffer_size, count);
*count -= 1;
if (function_addresses_buffer[*count-1] < vm_page_size)
*count -= 1;
return (*count > 0);
}
uint32_t
find_pointer_in_heap (intptr_t addr)
{
range_contains_data_callback_info_t data_info = { (uint8_t *)&addr, sizeof(addr), sizeof(addr), eDataTypeInteger, 0};
range_callback_info_t info = { enumerate_range_in_zone, range_contains_ptr_callback, &data_info };
foreach_zone_in_this_process (&info);
return data_info.match_count;
}
uint32_t
find_cstring_in_heap (const char *s)
{
if (s && s[0])
{
range_contains_data_callback_info_t data_info = { (uint8_t *)s, strlen(s), 1, eDataTypeCStr, 0};
range_callback_info_t info = { enumerate_range_in_zone, range_contains_ptr_callback, &data_info };
foreach_zone_in_this_process (&info);
return data_info.match_count;
}
else
{
printf ("error: invalid argument (empty cstring)\n");
}
return 0;
}
|