1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
//===- lib/ReaderWriter/ELF/SectionChunks.h -------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SectionChunks.h"
#include "TargetLayout.h"
#include "lld/Core/Parallel.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Dwarf.h"
namespace lld {
namespace elf {
template <class ELFT>
Section<ELFT>::Section(const ELFLinkingContext &ctx, StringRef sectionName,
StringRef chunkName, typename Chunk<ELFT>::Kind k)
: Chunk<ELFT>(chunkName, k, ctx), _inputSectionName(sectionName),
_outputSectionName(sectionName) {}
template <class ELFT> int Section<ELFT>::getContentType() const {
if (_flags & llvm::ELF::SHF_EXECINSTR)
return Chunk<ELFT>::ContentType::Code;
else if (_flags & llvm::ELF::SHF_WRITE)
return Chunk<ELFT>::ContentType::Data;
else if (_flags & llvm::ELF::SHF_ALLOC)
return Chunk<ELFT>::ContentType::Code;
else
return Chunk<ELFT>::ContentType::Unknown;
}
template <class ELFT>
AtomSection<ELFT>::AtomSection(const ELFLinkingContext &ctx,
StringRef sectionName, int32_t contentType,
int32_t permissions, int32_t order)
: Section<ELFT>(ctx, sectionName, "AtomSection",
Chunk<ELFT>::Kind::AtomSection),
_contentType(contentType), _contentPermissions(permissions) {
this->setOrder(order);
switch (contentType) {
case DefinedAtom::typeCode:
case DefinedAtom::typeDataFast:
case DefinedAtom::typeData:
case DefinedAtom::typeConstant:
case DefinedAtom::typeGOT:
case DefinedAtom::typeStub:
case DefinedAtom::typeResolver:
case DefinedAtom::typeThreadData:
this->_type = SHT_PROGBITS;
break;
case DefinedAtom::typeThreadZeroFill:
case DefinedAtom::typeZeroFillFast:
case DefinedAtom::typeZeroFill:
this->_type = SHT_NOBITS;
break;
case DefinedAtom::typeRONote:
case DefinedAtom::typeRWNote:
this->_type = SHT_NOTE;
break;
case DefinedAtom::typeNoAlloc:
this->_type = SHT_PROGBITS;
this->_isLoadedInMemory = false;
break;
}
switch (permissions) {
case DefinedAtom::permR__:
this->_flags = SHF_ALLOC;
break;
case DefinedAtom::permR_X:
this->_flags = SHF_ALLOC | SHF_EXECINSTR;
break;
case DefinedAtom::permRW_:
case DefinedAtom::permRW_L:
this->_flags = SHF_ALLOC | SHF_WRITE;
if (_contentType == DefinedAtom::typeThreadData ||
_contentType == DefinedAtom::typeThreadZeroFill)
this->_flags |= SHF_TLS;
break;
case DefinedAtom::permRWX:
this->_flags = SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR;
break;
case DefinedAtom::perm___:
this->_flags = 0;
break;
}
}
template <class ELFT>
void AtomSection<ELFT>::assignVirtualAddress(uint64_t addr) {
parallel_for_each(_atoms.begin(), _atoms.end(), [&](AtomLayout *ai) {
ai->_virtualAddr = addr + ai->_fileOffset;
});
}
template <class ELFT>
void AtomSection<ELFT>::assignFileOffsets(uint64_t offset) {
parallel_for_each(_atoms.begin(), _atoms.end(), [&](AtomLayout *ai) {
ai->_fileOffset = offset + ai->_fileOffset;
});
}
template <class ELFT>
const AtomLayout *
AtomSection<ELFT>::findAtomLayoutByName(StringRef name) const {
for (auto ai : _atoms)
if (ai->_atom->name() == name)
return ai;
return nullptr;
}
template <class ELFT>
void AtomSection<ELFT>::printError(const std::string &errorStr,
const AtomLayout &atom,
const Reference &ref) const {
StringRef kindValStr;
if (!this->_ctx.registry().referenceKindToString(
ref.kindNamespace(), ref.kindArch(), ref.kindValue(), kindValStr)) {
kindValStr = "unknown";
}
std::string errStr =
(Twine(errorStr) + " in file " + atom._atom->file().path() +
": reference from " + atom._atom->name() + "+" +
Twine(ref.offsetInAtom()) + " to " + ref.target()->name() + "+" +
Twine(ref.addend()) + " of type " + Twine(ref.kindValue()) + " (" +
kindValStr + ")\n")
.str();
// Take the lock to prevent output getting interleaved between threads
std::lock_guard<std::mutex> lock(_outputMutex);
llvm::errs() << errStr;
}
/// Align the offset to the required modulus defined by the atom alignment
template <class ELFT>
uint64_t AtomSection<ELFT>::alignOffset(uint64_t offset,
DefinedAtom::Alignment &atomAlign) {
uint64_t requiredModulus = atomAlign.modulus;
uint64_t alignment = atomAlign.value;
uint64_t currentModulus = (offset % alignment);
uint64_t retOffset = offset;
if (currentModulus != requiredModulus) {
if (requiredModulus > currentModulus)
retOffset += requiredModulus - currentModulus;
else
retOffset += alignment + requiredModulus - currentModulus;
}
return retOffset;
}
// \brief Append an atom to a Section. The atom gets pushed into a vector
// contains the atom, the atom file offset, the atom virtual address
// the atom file offset is aligned appropriately as set by the Reader
template <class ELFT>
const AtomLayout *AtomSection<ELFT>::appendAtom(const Atom *atom) {
const DefinedAtom *definedAtom = cast<DefinedAtom>(atom);
DefinedAtom::Alignment atomAlign = definedAtom->alignment();
uint64_t alignment = atomAlign.value;
// Align the atom to the required modulus/ align the file offset and the
// memory offset separately this is required so that BSS symbols are handled
// properly as the BSS symbols only occupy memory size and not file size
uint64_t fOffset = alignOffset(this->fileSize(), atomAlign);
uint64_t mOffset = alignOffset(this->memSize(), atomAlign);
switch (definedAtom->contentType()) {
case DefinedAtom::typeCode:
case DefinedAtom::typeConstant:
case DefinedAtom::typeData:
case DefinedAtom::typeDataFast:
case DefinedAtom::typeZeroFillFast:
case DefinedAtom::typeGOT:
case DefinedAtom::typeStub:
case DefinedAtom::typeResolver:
case DefinedAtom::typeThreadData:
case DefinedAtom::typeRONote:
case DefinedAtom::typeRWNote:
_atoms.push_back(new (_alloc) AtomLayout(atom, fOffset, 0));
this->_fsize = fOffset + definedAtom->size();
this->_msize = mOffset + definedAtom->size();
DEBUG_WITH_TYPE("Section", llvm::dbgs()
<< "[" << this->name() << " " << this << "] "
<< "Adding atom: " << atom->name() << "@"
<< fOffset << "\n");
break;
case DefinedAtom::typeNoAlloc:
_atoms.push_back(new (_alloc) AtomLayout(atom, fOffset, 0));
this->_fsize = fOffset + definedAtom->size();
DEBUG_WITH_TYPE("Section", llvm::dbgs()
<< "[" << this->name() << " " << this << "] "
<< "Adding atom: " << atom->name() << "@"
<< fOffset << "\n");
break;
case DefinedAtom::typeThreadZeroFill:
case DefinedAtom::typeZeroFill:
_atoms.push_back(new (_alloc) AtomLayout(atom, mOffset, 0));
this->_msize = mOffset + definedAtom->size();
break;
default:
llvm::dbgs() << definedAtom->contentType() << "\n";
llvm_unreachable("Uexpected content type.");
}
// Set the section alignment to the largest alignment
// std::max doesn't support uint64_t
if (this->_alignment < alignment)
this->_alignment = alignment;
if (_atoms.size())
return _atoms.back();
return nullptr;
}
/// \brief convert the segment type to a String for diagnostics
/// and printing purposes
template <class ELFT> StringRef Section<ELFT>::segmentKindToStr() const {
switch (_segmentType) {
case llvm::ELF::PT_DYNAMIC:
return "DYNAMIC";
case llvm::ELF::PT_INTERP:
return "INTERP";
case llvm::ELF::PT_LOAD:
return "LOAD";
case llvm::ELF::PT_GNU_EH_FRAME:
return "EH_FRAME";
case llvm::ELF::PT_GNU_RELRO:
return "GNU_RELRO";
case llvm::ELF::PT_NOTE:
return "NOTE";
case llvm::ELF::PT_NULL:
return "NULL";
case llvm::ELF::PT_TLS:
return "TLS";
default:
return "UNKNOWN";
}
}
/// \brief Write the section and the atom contents to the buffer
template <class ELFT>
void AtomSection<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
bool success = true;
parallel_for_each(_atoms.begin(), _atoms.end(), [&](AtomLayout *ai) {
DEBUG_WITH_TYPE("Section", llvm::dbgs()
<< "Writing atom: " << ai->_atom->name()
<< " | " << ai->_fileOffset << "\n");
const DefinedAtom *definedAtom = cast<DefinedAtom>(ai->_atom);
if (!definedAtom->occupiesDiskSpace())
return;
// Copy raw content of atom to file buffer.
ArrayRef<uint8_t> content = definedAtom->rawContent();
uint64_t contentSize = content.size();
if (contentSize == 0)
return;
uint8_t *atomContent = chunkBuffer + ai->_fileOffset;
std::memcpy(atomContent, content.data(), contentSize);
const TargetRelocationHandler &relHandler =
this->_ctx.getTargetHandler().getRelocationHandler();
for (const auto ref : *definedAtom) {
if (std::error_code ec =
relHandler.applyRelocation(*writer, buffer, *ai, *ref)) {
printError(ec.message(), *ai, *ref);
success = false;
}
}
});
if (!success)
llvm::report_fatal_error("relocating output");
}
template <class ELFT> void OutputSection<ELFT>::appendSection(Chunk<ELFT> *c) {
if (c->alignment() > _alignment)
_alignment = c->alignment();
if (const auto section = dyn_cast<Section<ELFT>>(c)) {
assert(!_link && "Section already has a link!");
_link = section->getLink();
_shInfo = section->getInfo();
_entSize = section->getEntSize();
_type = section->getType();
if (_flags < section->getFlags())
_flags = section->getFlags();
section->setOutputSection(this, (_sections.size() == 0));
}
_kind = c->kind();
_sections.push_back(c);
}
template <class ELFT>
StringTable<ELFT>::StringTable(const ELFLinkingContext &ctx, const char *str,
int32_t order, bool dynamic)
: Section<ELFT>(ctx, str, "StringTable") {
// the string table has a NULL entry for which
// add an empty string
_strings.push_back("");
this->_fsize = 1;
this->_alignment = 1;
this->setOrder(order);
this->_type = SHT_STRTAB;
if (dynamic) {
this->_flags = SHF_ALLOC;
this->_msize = this->_fsize;
}
}
template <class ELFT> uint64_t StringTable<ELFT>::addString(StringRef symname) {
if (symname.empty())
return 0;
StringMapTIter stringIter = _stringMap.find(symname);
if (stringIter == _stringMap.end()) {
_strings.push_back(symname);
uint64_t offset = this->_fsize;
this->_fsize += symname.size() + 1;
if (this->_flags & SHF_ALLOC)
this->_msize = this->_fsize;
_stringMap[symname] = offset;
return offset;
}
return stringIter->second;
}
template <class ELFT>
void StringTable<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
for (auto si : _strings) {
memcpy(dest, si.data(), si.size());
dest += si.size();
memcpy(dest, "", 1);
dest += 1;
}
}
/// ELF Symbol Table
template <class ELFT>
SymbolTable<ELFT>::SymbolTable(const ELFLinkingContext &ctx, const char *str,
int32_t order)
: Section<ELFT>(ctx, str, "SymbolTable") {
this->setOrder(order);
Elf_Sym symbol;
std::memset(&symbol, 0, sizeof(Elf_Sym));
_symbolTable.push_back(SymbolEntry(nullptr, symbol, nullptr));
this->_entSize = sizeof(Elf_Sym);
this->_fsize = sizeof(Elf_Sym);
this->_alignment = sizeof(Elf_Addr);
this->_type = SHT_SYMTAB;
}
template <class ELFT>
void SymbolTable<ELFT>::addDefinedAtom(Elf_Sym &sym, const DefinedAtom *da,
int64_t addr) {
unsigned char binding = 0, type = 0;
sym.st_size = da->size();
DefinedAtom::ContentType ct;
switch (ct = da->contentType()) {
case DefinedAtom::typeCode:
case DefinedAtom::typeStub:
sym.st_value = addr;
type = llvm::ELF::STT_FUNC;
break;
case DefinedAtom::typeResolver:
sym.st_value = addr;
type = llvm::ELF::STT_GNU_IFUNC;
break;
case DefinedAtom::typeDataFast:
case DefinedAtom::typeData:
case DefinedAtom::typeConstant:
sym.st_value = addr;
type = llvm::ELF::STT_OBJECT;
break;
case DefinedAtom::typeGOT:
sym.st_value = addr;
type = llvm::ELF::STT_NOTYPE;
break;
case DefinedAtom::typeZeroFill:
case DefinedAtom::typeZeroFillFast:
type = llvm::ELF::STT_OBJECT;
sym.st_value = addr;
break;
case DefinedAtom::typeThreadData:
case DefinedAtom::typeThreadZeroFill:
type = llvm::ELF::STT_TLS;
sym.st_value = addr;
break;
default:
type = llvm::ELF::STT_NOTYPE;
}
if (da->customSectionName() == da->name())
type = llvm::ELF::STT_SECTION;
if (da->scope() == DefinedAtom::scopeTranslationUnit)
binding = llvm::ELF::STB_LOCAL;
else
binding = llvm::ELF::STB_GLOBAL;
sym.setBindingAndType(binding, type);
}
template <class ELFT>
void SymbolTable<ELFT>::addAbsoluteAtom(Elf_Sym &sym, const AbsoluteAtom *aa,
int64_t addr) {
unsigned char binding = 0, type = 0;
type = llvm::ELF::STT_OBJECT;
sym.st_shndx = llvm::ELF::SHN_ABS;
switch (aa->scope()) {
case AbsoluteAtom::scopeLinkageUnit:
sym.setVisibility(llvm::ELF::STV_HIDDEN);
binding = llvm::ELF::STB_LOCAL;
break;
case AbsoluteAtom::scopeTranslationUnit:
binding = llvm::ELF::STB_LOCAL;
break;
case AbsoluteAtom::scopeGlobal:
binding = llvm::ELF::STB_GLOBAL;
break;
}
sym.st_value = addr;
sym.setBindingAndType(binding, type);
}
template <class ELFT>
void SymbolTable<ELFT>::addSharedLibAtom(Elf_Sym &sym,
const SharedLibraryAtom *aa) {
unsigned char binding = 0, type = 0;
if (aa->type() == SharedLibraryAtom::Type::Data) {
type = llvm::ELF::STT_OBJECT;
sym.st_size = aa->size();
} else
type = llvm::ELF::STT_FUNC;
sym.st_shndx = llvm::ELF::SHN_UNDEF;
binding = llvm::ELF::STB_GLOBAL;
sym.setBindingAndType(binding, type);
}
template <class ELFT>
void SymbolTable<ELFT>::addUndefinedAtom(Elf_Sym &sym,
const UndefinedAtom *ua) {
unsigned char binding = 0, type = 0;
sym.st_value = 0;
type = llvm::ELF::STT_NOTYPE;
if (ua->canBeNull())
binding = llvm::ELF::STB_WEAK;
else
binding = llvm::ELF::STB_GLOBAL;
sym.setBindingAndType(binding, type);
}
/// Add a symbol to the symbol Table, definedAtoms which get added to the symbol
/// section don't have their virtual addresses set at the time of adding the
/// symbol to the symbol table(Example: dynamic symbols), the addresses needs
/// to be updated in the table before writing the dynamic symbol table
/// information
template <class ELFT>
void SymbolTable<ELFT>::addSymbol(const Atom *atom, int32_t sectionIndex,
uint64_t addr, const AtomLayout *atomLayout) {
Elf_Sym symbol;
if (atom->name().empty())
return;
symbol.st_name = _stringSection->addString(atom->name());
symbol.st_size = 0;
symbol.st_shndx = sectionIndex;
symbol.st_value = 0;
symbol.st_other = 0;
symbol.setVisibility(llvm::ELF::STV_DEFAULT);
// Add all the atoms
if (const DefinedAtom *da = dyn_cast<const DefinedAtom>(atom))
addDefinedAtom(symbol, da, addr);
else if (const AbsoluteAtom *aa = dyn_cast<const AbsoluteAtom>(atom))
addAbsoluteAtom(symbol, aa, addr);
else if (isa<const SharedLibraryAtom>(atom))
addSharedLibAtom(symbol, dyn_cast<SharedLibraryAtom>(atom));
else
addUndefinedAtom(symbol, dyn_cast<UndefinedAtom>(atom));
_symbolTable.push_back(SymbolEntry(atom, symbol, atomLayout));
this->_fsize += sizeof(Elf_Sym);
if (this->_flags & SHF_ALLOC)
this->_msize = this->_fsize;
}
template <class ELFT> void SymbolTable<ELFT>::finalize(bool sort) {
// sh_info should be one greater than last symbol with STB_LOCAL binding
// we sort the symbol table to keep all local symbols at the beginning
if (sort)
sortSymbols();
uint16_t shInfo = 0;
for (const auto &i : _symbolTable) {
if (i._symbol.getBinding() != llvm::ELF::STB_LOCAL)
break;
shInfo++;
}
this->_info = shInfo;
this->_link = _stringSection->ordinal();
if (this->_outputSection) {
this->_outputSection->setInfo(this->_info);
this->_outputSection->setLink(this->_link);
}
}
template <class ELFT>
void SymbolTable<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
for (const auto &sti : _symbolTable) {
memcpy(dest, &sti._symbol, sizeof(Elf_Sym));
dest += sizeof(Elf_Sym);
}
}
template <class ELFT>
DynamicSymbolTable<ELFT>::DynamicSymbolTable(const ELFLinkingContext &ctx,
TargetLayout<ELFT> &layout,
const char *str, int32_t order)
: SymbolTable<ELFT>(ctx, str, order), _layout(layout) {
this->_type = SHT_DYNSYM;
this->_flags = SHF_ALLOC;
this->_msize = this->_fsize;
}
template <class ELFT> void DynamicSymbolTable<ELFT>::addSymbolsToHashTable() {
int index = 0;
for (auto &ste : this->_symbolTable) {
if (!ste._atom)
_hashTable->addSymbol("", index);
else
_hashTable->addSymbol(ste._atom->name(), index);
++index;
}
}
template <class ELFT> void DynamicSymbolTable<ELFT>::finalize() {
// Defined symbols which have been added into the dynamic symbol table
// don't have their addresses known until addresses have been assigned
// so let's update the symbol values after they have got assigned
for (auto &ste : this->_symbolTable) {
const AtomLayout *atomLayout = ste._atomLayout;
if (!atomLayout)
continue;
ste._symbol.st_value = atomLayout->_virtualAddr;
}
// Don't sort the symbols
SymbolTable<ELFT>::finalize(false);
}
template <class ELFT>
RelocationTable<ELFT>::RelocationTable(const ELFLinkingContext &ctx,
StringRef str, int32_t order)
: Section<ELFT>(ctx, str, "RelocationTable") {
this->setOrder(order);
this->_flags = SHF_ALLOC;
// Set the alignment properly depending on the target architecture
this->_alignment = ELFT::Is64Bits ? 8 : 4;
if (ctx.isRelaOutputFormat()) {
this->_entSize = sizeof(Elf_Rela);
this->_type = SHT_RELA;
} else {
this->_entSize = sizeof(Elf_Rel);
this->_type = SHT_REL;
}
}
template <class ELFT>
uint32_t RelocationTable<ELFT>::addRelocation(const DefinedAtom &da,
const Reference &r) {
_relocs.emplace_back(&da, &r);
this->_fsize = _relocs.size() * this->_entSize;
this->_msize = this->_fsize;
return _relocs.size() - 1;
}
template <class ELFT>
bool RelocationTable<ELFT>::getRelocationIndex(const Reference &r,
uint32_t &res) {
auto rel = std::find_if(
_relocs.begin(), _relocs.end(),
[&](const std::pair<const DefinedAtom *, const Reference *> &p) {
if (p.second == &r)
return true;
return false;
});
if (rel == _relocs.end())
return false;
res = std::distance(_relocs.begin(), rel);
return true;
}
template <class ELFT>
bool RelocationTable<ELFT>::canModifyReadonlySection() const {
for (const auto &rel : _relocs) {
const DefinedAtom *atom = rel.first;
if ((atom->permissions() & DefinedAtom::permRW_) != DefinedAtom::permRW_)
return true;
}
return false;
}
template <class ELFT> void RelocationTable<ELFT>::finalize() {
this->_link = _symbolTable ? _symbolTable->ordinal() : 0;
if (this->_outputSection)
this->_outputSection->setLink(this->_link);
}
template <class ELFT>
void RelocationTable<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
for (const auto &rel : _relocs) {
if (this->_ctx.isRelaOutputFormat()) {
auto &r = *reinterpret_cast<Elf_Rela *>(dest);
writeRela(writer, r, *rel.first, *rel.second);
DEBUG_WITH_TYPE("ELFRelocationTable",
llvm::dbgs()
<< rel.second->kindValue() << " relocation at "
<< rel.first->name() << "@" << r.r_offset << " to "
<< rel.second->target()->name() << "@" << r.r_addend
<< "\n";);
} else {
auto &r = *reinterpret_cast<Elf_Rel *>(dest);
writeRel(writer, r, *rel.first, *rel.second);
DEBUG_WITH_TYPE("ELFRelocationTable",
llvm::dbgs() << rel.second->kindValue()
<< " relocation at " << rel.first->name()
<< "@" << r.r_offset << " to "
<< rel.second->target()->name() << "\n";);
}
dest += this->_entSize;
}
}
template <class ELFT>
void RelocationTable<ELFT>::writeRela(ELFWriter *writer, Elf_Rela &r,
const DefinedAtom &atom,
const Reference &ref) {
r.setSymbolAndType(getSymbolIndex(ref.target()), ref.kindValue(), false);
r.r_offset = writer->addressOfAtom(&atom) + ref.offsetInAtom();
// The addend is used only by relative relocations
if (this->_ctx.isRelativeReloc(ref))
r.r_addend = writer->addressOfAtom(ref.target()) + ref.addend();
else
r.r_addend = 0;
}
template <class ELFT>
void RelocationTable<ELFT>::writeRel(ELFWriter *writer, Elf_Rel &r,
const DefinedAtom &atom,
const Reference &ref) {
r.setSymbolAndType(getSymbolIndex(ref.target()), ref.kindValue(), false);
r.r_offset = writer->addressOfAtom(&atom) + ref.offsetInAtom();
}
template <class ELFT>
uint32_t RelocationTable<ELFT>::getSymbolIndex(const Atom *a) {
return _symbolTable ? _symbolTable->getSymbolTableIndex(a)
: (uint32_t)STN_UNDEF;
}
template <class ELFT>
DynamicTable<ELFT>::DynamicTable(const ELFLinkingContext &ctx,
TargetLayout<ELFT> &layout, StringRef str,
int32_t order)
: Section<ELFT>(ctx, str, "DynamicSection"), _layout(layout) {
this->setOrder(order);
this->_entSize = sizeof(Elf_Dyn);
this->_alignment = ELFT::Is64Bits ? 8 : 4;
// Reserve space for the DT_NULL entry.
this->_fsize = sizeof(Elf_Dyn);
this->_msize = sizeof(Elf_Dyn);
this->_type = SHT_DYNAMIC;
this->_flags = SHF_ALLOC;
}
template <class ELFT> std::size_t DynamicTable<ELFT>::addEntry(Elf_Dyn e) {
_entries.push_back(e);
this->_fsize = (_entries.size() * sizeof(Elf_Dyn)) + sizeof(Elf_Dyn);
this->_msize = this->_fsize;
return _entries.size() - 1;
}
template <class ELFT>
void DynamicTable<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
// Add the null entry.
Elf_Dyn d;
d.d_tag = 0;
d.d_un.d_val = 0;
_entries.push_back(d);
std::memcpy(dest, _entries.data(), this->_fsize);
}
template <class ELFT> void DynamicTable<ELFT>::createDefaultEntries() {
bool isRela = this->_ctx.isRelaOutputFormat();
Elf_Dyn dyn;
dyn.d_un.d_val = 0;
dyn.d_tag = DT_HASH;
_dt_hash = addEntry(dyn);
dyn.d_tag = DT_STRTAB;
_dt_strtab = addEntry(dyn);
dyn.d_tag = DT_SYMTAB;
_dt_symtab = addEntry(dyn);
dyn.d_tag = DT_STRSZ;
_dt_strsz = addEntry(dyn);
dyn.d_tag = DT_SYMENT;
_dt_syment = addEntry(dyn);
if (_layout.hasDynamicRelocationTable()) {
dyn.d_tag = isRela ? DT_RELA : DT_REL;
_dt_rela = addEntry(dyn);
dyn.d_tag = isRela ? DT_RELASZ : DT_RELSZ;
_dt_relasz = addEntry(dyn);
dyn.d_tag = isRela ? DT_RELAENT : DT_RELENT;
_dt_relaent = addEntry(dyn);
if (_layout.getDynamicRelocationTable()->canModifyReadonlySection()) {
dyn.d_tag = DT_TEXTREL;
_dt_textrel = addEntry(dyn);
}
}
if (_layout.hasPLTRelocationTable()) {
dyn.d_tag = DT_PLTRELSZ;
_dt_pltrelsz = addEntry(dyn);
dyn.d_tag = getGotPltTag();
_dt_pltgot = addEntry(dyn);
dyn.d_tag = DT_PLTREL;
dyn.d_un.d_val = isRela ? DT_RELA : DT_REL;
_dt_pltrel = addEntry(dyn);
dyn.d_un.d_val = 0;
dyn.d_tag = DT_JMPREL;
_dt_jmprel = addEntry(dyn);
}
}
template <class ELFT> void DynamicTable<ELFT>::doPreFlight() {
Elf_Dyn dyn;
dyn.d_un.d_val = 0;
auto initArray = _layout.findOutputSection(".init_array");
auto finiArray = _layout.findOutputSection(".fini_array");
if (initArray) {
dyn.d_tag = DT_INIT_ARRAY;
_dt_init_array = addEntry(dyn);
dyn.d_tag = DT_INIT_ARRAYSZ;
_dt_init_arraysz = addEntry(dyn);
}
if (finiArray) {
dyn.d_tag = DT_FINI_ARRAY;
_dt_fini_array = addEntry(dyn);
dyn.d_tag = DT_FINI_ARRAYSZ;
_dt_fini_arraysz = addEntry(dyn);
}
if (getInitAtomLayout()) {
dyn.d_tag = DT_INIT;
_dt_init = addEntry(dyn);
}
if (getFiniAtomLayout()) {
dyn.d_tag = DT_FINI;
_dt_fini = addEntry(dyn);
}
}
template <class ELFT> void DynamicTable<ELFT>::finalize() {
StringTable<ELFT> *dynamicStringTable = _dynamicSymbolTable->getStringTable();
this->_link = dynamicStringTable->ordinal();
if (this->_outputSection) {
this->_outputSection->setType(this->_type);
this->_outputSection->setInfo(this->_info);
this->_outputSection->setLink(this->_link);
}
}
template <class ELFT> void DynamicTable<ELFT>::updateDynamicTable() {
StringTable<ELFT> *dynamicStringTable = _dynamicSymbolTable->getStringTable();
_entries[_dt_hash].d_un.d_val = _hashTable->virtualAddr();
_entries[_dt_strtab].d_un.d_val = dynamicStringTable->virtualAddr();
_entries[_dt_symtab].d_un.d_val = _dynamicSymbolTable->virtualAddr();
_entries[_dt_strsz].d_un.d_val = dynamicStringTable->memSize();
_entries[_dt_syment].d_un.d_val = _dynamicSymbolTable->getEntSize();
auto initArray = _layout.findOutputSection(".init_array");
if (initArray) {
_entries[_dt_init_array].d_un.d_val = initArray->virtualAddr();
_entries[_dt_init_arraysz].d_un.d_val = initArray->memSize();
}
auto finiArray = _layout.findOutputSection(".fini_array");
if (finiArray) {
_entries[_dt_fini_array].d_un.d_val = finiArray->virtualAddr();
_entries[_dt_fini_arraysz].d_un.d_val = finiArray->memSize();
}
if (const auto *al = getInitAtomLayout())
_entries[_dt_init].d_un.d_val = getAtomVirtualAddress(al);
if (const auto *al = getFiniAtomLayout())
_entries[_dt_fini].d_un.d_val = getAtomVirtualAddress(al);
if (_layout.hasDynamicRelocationTable()) {
auto relaTbl = _layout.getDynamicRelocationTable();
_entries[_dt_rela].d_un.d_val = relaTbl->virtualAddr();
_entries[_dt_relasz].d_un.d_val = relaTbl->memSize();
_entries[_dt_relaent].d_un.d_val = relaTbl->getEntSize();
}
if (_layout.hasPLTRelocationTable()) {
auto relaTbl = _layout.getPLTRelocationTable();
_entries[_dt_jmprel].d_un.d_val = relaTbl->virtualAddr();
_entries[_dt_pltrelsz].d_un.d_val = relaTbl->memSize();
auto gotplt = _layout.findOutputSection(".got.plt");
_entries[_dt_pltgot].d_un.d_val = gotplt->virtualAddr();
}
}
template <class ELFT>
const AtomLayout *DynamicTable<ELFT>::getInitAtomLayout() {
auto al = _layout.findAtomLayoutByName(this->_ctx.initFunction());
if (al && isa<DefinedAtom>(al->_atom))
return al;
return nullptr;
}
template <class ELFT>
const AtomLayout *DynamicTable<ELFT>::getFiniAtomLayout() {
auto al = _layout.findAtomLayoutByName(this->_ctx.finiFunction());
if (al && isa<DefinedAtom>(al->_atom))
return al;
return nullptr;
}
template <class ELFT>
InterpSection<ELFT>::InterpSection(const ELFLinkingContext &ctx, StringRef str,
int32_t order, StringRef interp)
: Section<ELFT>(ctx, str, "Dynamic:Interp"), _interp(interp) {
this->setOrder(order);
this->_alignment = 1;
// + 1 for null term.
this->_fsize = interp.size() + 1;
this->_msize = this->_fsize;
this->_type = SHT_PROGBITS;
this->_flags = SHF_ALLOC;
}
template <class ELFT>
void InterpSection<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
std::memcpy(dest, _interp.data(), _interp.size());
}
template <class ELFT>
HashSection<ELFT>::HashSection(const ELFLinkingContext &ctx, StringRef name,
int32_t order)
: Section<ELFT>(ctx, name, "Dynamic:Hash") {
this->setOrder(order);
this->_entSize = 4;
this->_type = SHT_HASH;
this->_flags = SHF_ALLOC;
this->_alignment = ELFT::Is64Bits ? 8 : 4;
this->_fsize = 0;
this->_msize = 0;
}
template <class ELFT>
void HashSection<ELFT>::addSymbol(StringRef name, uint32_t index) {
SymbolTableEntry ste;
ste._name = name;
ste._index = index;
_entries.push_back(ste);
}
/// \brief Set the dynamic symbol table
template <class ELFT>
void HashSection<ELFT>::setSymbolTable(
const DynamicSymbolTable<ELFT> *symbolTable) {
_symbolTable = symbolTable;
}
template <class ELFT> void HashSection<ELFT>::doPreFlight() {
// The number of buckets to use for a certain number of symbols.
// If there are less than 3 symbols, 1 bucket will be used. If
// there are less than 17 symbols, 3 buckets will be used, and so
// forth. The bucket numbers are defined by GNU ld. We use the
// same rules here so we generate hash sections with the same
// size as those generated by GNU ld.
uint32_t hashBuckets[] = {1, 3, 17, 37, 67, 97, 131,
197, 263, 521, 1031, 2053, 4099, 8209,
16411, 32771, 65537, 131101, 262147};
int hashBucketsCount = sizeof(hashBuckets) / sizeof(uint32_t);
unsigned int bucketsCount = 0;
unsigned int dynSymCount = _entries.size();
// Get the number of buckes that we want to use
for (int i = 0; i < hashBucketsCount; ++i) {
if (dynSymCount < hashBuckets[i])
break;
bucketsCount = hashBuckets[i];
}
_buckets.resize(bucketsCount);
_chains.resize(_entries.size());
// Create the hash table for the dynamic linker
for (auto ai : _entries) {
unsigned int dynsymIndex = ai._index;
unsigned int bucketpos = llvm::object::elf_hash(ai._name) % bucketsCount;
_chains[dynsymIndex] = _buckets[bucketpos];
_buckets[bucketpos] = dynsymIndex;
}
this->_fsize = (2 + _chains.size() + _buckets.size()) * sizeof(uint32_t);
this->_msize = this->_fsize;
}
template <class ELFT> void HashSection<ELFT>::finalize() {
this->_link = _symbolTable ? _symbolTable->ordinal() : 0;
if (this->_outputSection)
this->_outputSection->setLink(this->_link);
}
template <class ELFT>
void HashSection<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
Elf_Word bucketChainCounts[2];
bucketChainCounts[0] = _buckets.size();
bucketChainCounts[1] = _chains.size();
std::memcpy(dest, bucketChainCounts, sizeof(bucketChainCounts));
dest += sizeof(bucketChainCounts);
// write bucket values
std::memcpy(dest, _buckets.data(), _buckets.size() * sizeof(Elf_Word));
dest += _buckets.size() * sizeof(Elf_Word);
// write chain values
std::memcpy(dest, _chains.data(), _chains.size() * sizeof(Elf_Word));
}
template <class ELFT>
EHFrameHeader<ELFT>::EHFrameHeader(const ELFLinkingContext &ctx, StringRef name,
TargetLayout<ELFT> &layout, int32_t order)
: Section<ELFT>(ctx, name, "EHFrameHeader"), _layout(layout) {
this->setOrder(order);
this->_entSize = 0;
this->_type = SHT_PROGBITS;
this->_flags = SHF_ALLOC;
this->_alignment = ELFT::Is64Bits ? 8 : 4;
// Minimum size for empty .eh_frame_hdr.
this->_fsize = 1 + 1 + 1 + 1 + 4;
this->_msize = this->_fsize;
}
template <class ELFT> void EHFrameHeader<ELFT>::doPreFlight() {
// TODO: Generate a proper binary search table.
}
template <class ELFT> void EHFrameHeader<ELFT>::finalize() {
OutputSection<ELFT> *s = _layout.findOutputSection(".eh_frame");
OutputSection<ELFT> *h = _layout.findOutputSection(".eh_frame_hdr");
if (s && h)
_ehFrameOffset = s->virtualAddr() - (h->virtualAddr() + 4);
}
template <class ELFT>
void EHFrameHeader<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
uint8_t *chunkBuffer = buffer.getBufferStart();
uint8_t *dest = chunkBuffer + this->fileOffset();
int pos = 0;
dest[pos++] = 1; // version
dest[pos++] = llvm::dwarf::DW_EH_PE_pcrel |
llvm::dwarf::DW_EH_PE_sdata4; // eh_frame_ptr_enc
dest[pos++] = llvm::dwarf::DW_EH_PE_omit; // fde_count_enc
dest[pos++] = llvm::dwarf::DW_EH_PE_omit; // table_enc
*reinterpret_cast<typename llvm::object::ELFFile<ELFT>::Elf_Sword *>(
dest + pos) = _ehFrameOffset;
}
#define INSTANTIATE(klass) \
template class klass<ELF32LE>; \
template class klass<ELF32BE>; \
template class klass<ELF64LE>; \
template class klass<ELF64BE>
INSTANTIATE(AtomSection);
INSTANTIATE(DynamicSymbolTable);
INSTANTIATE(DynamicTable);
INSTANTIATE(EHFrameHeader);
INSTANTIATE(HashSection);
INSTANTIATE(InterpSection);
INSTANTIATE(OutputSection);
INSTANTIATE(RelocationTable);
INSTANTIATE(Section);
INSTANTIATE(StringTable);
INSTANTIATE(SymbolTable);
} // end namespace elf
} // end namespace lld
|