1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
#ifndef LLD_ELFATOMS_H
#define LLD_ELFATOMS_H
#include "lld/Core/LLVM.h"
#include "ELFTargetHandler.h"
#include <memory>
#include <vector>
namespace lld {
template <typename ELFT> class FileELF;
namespace elf { template <typename ELFT> class ELFTargetAtomHandler; }
/// \brief Relocation References: Defined Atoms may contain references that will
/// need to be patched before the executable is written.
template <class ELFT> class ELFReference LLVM_FINAL : public Reference {
typedef llvm::object::Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef llvm::object::Elf_Rel_Impl<ELFT, true> Elf_Rela;
public:
ELFReference(const Elf_Rela *rela, uint64_t offset, const Atom *target)
: _target(target)
, _targetSymbolIndex(rela->getSymbol())
, _offsetInAtom(offset)
, _addend(rela->r_addend)
, _kind(rela->getType()) {}
ELFReference(const Elf_Rel *rel, uint64_t offset, const Atom *target)
: _target(target)
, _targetSymbolIndex(rel->getSymbol())
, _offsetInAtom(offset)
, _addend(0)
, _kind(rel->getType()) {}
virtual uint64_t offsetInAtom() const {
return _offsetInAtom;
}
virtual Kind kind() const {
return _kind;
}
virtual void setKind(Kind kind) {
_kind = kind;
}
virtual const Atom *target() const {
return _target;
}
/// \brief The symbol table index that contains the target reference.
uint64_t targetSymbolIndex() const {
return _targetSymbolIndex;
}
virtual Addend addend() const {
return _addend;
}
virtual void setAddend(Addend A) {
_addend = A;
}
virtual void setTarget(const Atom *newAtom) {
_target = newAtom;
}
private:
const Atom *_target;
uint64_t _targetSymbolIndex;
uint64_t _offsetInAtom;
Addend _addend;
Kind _kind;
};
/// \brief These atoms store symbols that are fixed to a particular address.
/// This atom has no content its address will be used by the writer to fixup
/// references that point to it.
template<class ELFT>
class ELFAbsoluteAtom LLVM_FINAL : public AbsoluteAtom {
typedef llvm::object::Elf_Sym_Impl<ELFT> Elf_Sym;
public:
ELFAbsoluteAtom(const FileELF<ELFT> &file, llvm::StringRef name,
const Elf_Sym *symbol, uint64_t value)
: _owningFile(file), _name(name), _symbol(symbol), _value(value) {
}
virtual const class FileELF<ELFT> &file() const {
return _owningFile;
} virtual Scope scope() const {
if (_symbol->st_other == llvm::ELF::STV_HIDDEN)
return scopeLinkageUnit;
if (_symbol->getBinding() == llvm::ELF::STB_LOCAL)
return scopeTranslationUnit;
else
return scopeGlobal;
}
virtual llvm::StringRef name() const {
return _name;
}
virtual uint64_t value() const {
return _value;
}
private:
const FileELF<ELFT> &_owningFile;
llvm::StringRef _name;
const Elf_Sym *_symbol;
uint64_t _value;
};
/// \brief ELFUndefinedAtom: These atoms store undefined symbols and are place
/// holders that will be replaced by defined atoms later in the linking process.
template<class ELFT>
class ELFUndefinedAtom LLVM_FINAL : public UndefinedAtom {
typedef llvm::object::Elf_Sym_Impl<ELFT> Elf_Sym;
public:
ELFUndefinedAtom(const FileELF<ELFT> &file, llvm::StringRef name,
const Elf_Sym *symbol)
: _owningFile(file), _name(name), _symbol(symbol) {}
virtual const class FileELF<ELFT> &file() const {
return _owningFile;
}
virtual llvm::StringRef name() const {
return _name;
}
// FIXME: What distinguishes a symbol in ELF that can help decide if the
// symbol is undefined only during build and not runtime? This will make us
// choose canBeNullAtBuildtime and canBeNullAtRuntime.
virtual CanBeNull canBeNull() const {
if (_symbol->getBinding() == llvm::ELF::STB_WEAK)
return CanBeNull::canBeNullAtBuildtime;
else
return CanBeNull::canBeNullNever;
}
private:
const FileELF<ELFT> &_owningFile;
llvm::StringRef _name;
const Elf_Sym *_symbol;
};
/// \brief This atom stores defined symbols and will contain either data or
/// code.
template<class ELFT>
class ELFDefinedAtom LLVM_FINAL : public DefinedAtom {
typedef llvm::object::Elf_Sym_Impl<ELFT> Elf_Sym;
typedef llvm::object::Elf_Shdr_Impl<ELFT> Elf_Shdr;
public:
ELFDefinedAtom(const FileELF<ELFT> &file,
llvm::StringRef symbolName,
llvm::StringRef sectionName,
const Elf_Sym *symbol,
const Elf_Shdr *section,
llvm::ArrayRef<uint8_t> contentData,
unsigned int referenceStart,
unsigned int referenceEnd,
std::vector<ELFReference<ELFT>*> &referenceList)
: _owningFile(file)
, _symbolName(symbolName)
, _sectionName(sectionName)
, _symbol(symbol)
, _section(section)
, _contentData(contentData)
, _referenceStartIndex(referenceStart)
, _referenceEndIndex(referenceEnd)
, _referenceList(referenceList) {
static uint64_t orderNumber = 0;
_ordinal = ++orderNumber;
}
virtual const class FileELF<ELFT> &file() const {
return _owningFile;
}
virtual llvm::StringRef name() const {
return _symbolName;
}
virtual uint64_t ordinal() const {
return _ordinal;
}
virtual uint64_t size() const {
// Common symbols are not allocated in object files,
// so use st_size to tell how many bytes are required.
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
return (uint64_t)_symbol->st_size;
return _contentData.size();
}
virtual Scope scope() const {
if (_symbol->st_other == llvm::ELF::STV_HIDDEN)
return scopeLinkageUnit;
else if (_symbol->getBinding() != llvm::ELF::STB_LOCAL)
return scopeGlobal;
else
return scopeTranslationUnit;
}
// FIXME: Need to revisit this in future.
virtual Interposable interposable() const {
return interposeNo;
}
// FIXME: What ways can we determine this in ELF?
virtual Merge merge() const {
if (_symbol->getBinding() == llvm::ELF::STB_WEAK)
return mergeAsWeak;
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
return mergeAsTentative;
return mergeNo;
}
virtual ContentType contentType() const {
ContentType ret = typeUnknown;
uint64_t flags = _section->sh_flags;
if (_symbol->st_shndx > llvm::ELF::SHN_LOPROC &&
_symbol->st_shndx < llvm::ELF::SHN_HIPROC) {
const ELFTargetInfo &eti =
(_owningFile.getTargetInfo());
elf::ELFTargetHandler<ELFT> &elfTargetHandler =
eti.getTargetHandler<ELFT>();
elf::ELFTargetAtomHandler<ELFT> &elfAtomHandler =
elfTargetHandler.targetAtomHandler();
return elfAtomHandler.contentType(this);
}
if (_symbol->getType() == llvm::ELF::STT_GNU_IFUNC)
return typeResolver;
if (_symbol->st_shndx == llvm::ELF::SHN_COMMON)
return typeZeroFill;
switch (_section->sh_type) {
case llvm::ELF::SHT_PROGBITS:
flags &= ~llvm::ELF::SHF_ALLOC;
flags &= ~llvm::ELF::SHF_GROUP;
switch (flags) {
case llvm::ELF::SHF_EXECINSTR:
case (llvm::ELF::SHF_WRITE|llvm::ELF::SHF_EXECINSTR):
ret = typeCode;
break;
case llvm::ELF::SHF_WRITE:
ret = typeData;
break;
case (llvm::ELF::SHF_MERGE|llvm::ELF::SHF_STRINGS):
case llvm::ELF::SHF_STRINGS:
ret = typeConstant;
break;
default:
ret = typeCode;
break;
}
break;
case llvm::ELF::SHT_NOBITS:
ret = typeZeroFill;
break;
case llvm::ELF::SHT_NULL:
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
ret = typeZeroFill;
break;
case llvm::ELF::SHT_INIT_ARRAY:
ret = typeData;
break;
}
return ret;
}
virtual Alignment alignment() const {
// Unallocated common symbols specify their alignment constraints in
// st_value.
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON) {
return Alignment(llvm::Log2_64(_symbol->st_value));
}
return Alignment(llvm::Log2_64(_section->sh_addralign),
_symbol->st_value % _section->sh_addralign);
}
// Do we have a choice for ELF? All symbols live in explicit sections.
virtual SectionChoice sectionChoice() const {
if (_symbol->st_shndx > llvm::ELF::SHN_LORESERVE)
return sectionBasedOnContent;
return sectionCustomRequired;
}
virtual llvm::StringRef customSectionName() const {
if ((contentType() == typeZeroFill) ||
(_symbol->st_shndx == llvm::ELF::SHN_COMMON))
return ".bss";
return _sectionName;
}
virtual SectionPosition sectionPosition() const {
return sectionPositionAny;
}
// It isn't clear that __attribute__((used)) is transmitted to the ELF object
// file.
virtual DeadStripKind deadStrip() const {
return deadStripNormal;
}
virtual ContentPermissions permissions() const {
uint64_t flags = _section->sh_flags;
switch (_section->sh_type) {
// permRW_L is for sections modified by the runtime
// loader.
case llvm::ELF::SHT_REL:
case llvm::ELF::SHT_RELA:
return permRW_L;
case llvm::ELF::SHT_DYNAMIC:
case llvm::ELF::SHT_PROGBITS:
flags &= ~llvm::ELF::SHF_ALLOC;
flags &= ~llvm::ELF::SHF_GROUP;
switch (flags) {
// Code
case llvm::ELF::SHF_EXECINSTR:
return permR_X;
case (llvm::ELF::SHF_WRITE|llvm::ELF::SHF_EXECINSTR):
return permRWX;
// Data
case llvm::ELF::SHF_WRITE:
return permRW_;
// Strings
case llvm::ELF::SHF_MERGE:
case llvm::ELF::SHF_STRINGS:
return permR__;
default:
if (flags & llvm::ELF::SHF_WRITE)
return permRW_;
return permR__;
}
case llvm::ELF::SHT_NOBITS:
return permRW_;
case llvm::ELF::SHT_INIT_ARRAY:
return permRW_;
default:
return perm___;
}
}
// Many non ARM architectures use ELF file format This not really a place to
// put a architecture specific method in an atom. A better approach is needed.
virtual bool isThumb() const {
return false;
}
// FIXME: Not Sure if ELF supports alias atoms. Find out more.
virtual bool isAlias() const {
return false;
}
virtual llvm::ArrayRef<uint8_t> rawContent() const {
return _contentData;
}
DefinedAtom::reference_iterator begin() const {
uintptr_t index = _referenceStartIndex;
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
DefinedAtom::reference_iterator end() const {
uintptr_t index = _referenceEndIndex;
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
const Reference *derefIterator(const void *It) const {
uintptr_t index = reinterpret_cast<uintptr_t>(It);
assert(index >= _referenceStartIndex);
assert(index < _referenceEndIndex);
return ((_referenceList)[index]);
}
void incrementIterator(const void*& It) const {
uintptr_t index = reinterpret_cast<uintptr_t>(It);
++index;
It = reinterpret_cast<const void*>(index);
}
private:
const FileELF<ELFT> &_owningFile;
llvm::StringRef _symbolName;
llvm::StringRef _sectionName;
const Elf_Sym *_symbol;
const Elf_Shdr *_section;
/// \brief Holds the bits that make up the atom.
llvm::ArrayRef<uint8_t> _contentData;
uint64_t _ordinal;
unsigned int _referenceStartIndex;
unsigned int _referenceEndIndex;
std::vector<ELFReference<ELFT>*> &
_referenceList;
};
} // namespace lld
#endif
|