1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
//===- Writer.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Writer.h"
#include "Config.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Target.h"
#include "llvm/Support/FileOutputBuffer.h"
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace lld;
using namespace lld::elf2;
static const int PageSize = 4096;
// On freebsd x86_64 the first page cannot be mmaped.
// On linux that is controled by vm.mmap_min_addr. At least on some x86_64
// installs that is 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
// If using 2MB pages, the smallest page aligned address that works is
// 0x200000, but it looks like every OS uses 4k pages for executables.
// FIXME: This is architecture and OS dependent.
static const int VAStart = 0x10000;
namespace {
static uint32_t toPHDRFlags(uint64_t Flags) {
uint32_t Ret = PF_R;
if (Flags & SHF_WRITE)
Ret |= PF_W;
if (Flags & SHF_EXECINSTR)
Ret |= PF_X;
return Ret;
}
template <class ELFT> struct ProgramHeader {
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr;
ProgramHeader(uintX_t Type, uintX_t Flags, uintX_t FileOff, uintX_t VA) {
std::memset(&Header, 0, sizeof(Elf_Phdr));
Header.p_type = Type;
Header.p_flags = Flags;
Header.p_align = PageSize;
Header.p_offset = FileOff;
Header.p_vaddr = VA;
Header.p_paddr = VA;
}
void setValuesFromSection(OutputSectionBase<ELFT::Is64Bits> &Sec) {
Header.p_flags = toPHDRFlags(Sec.getFlags());
Header.p_offset = Sec.getFileOff();
Header.p_vaddr = Sec.getVA();
Header.p_paddr = Header.p_vaddr;
Header.p_filesz = Sec.getSize();
Header.p_memsz = Header.p_filesz;
Header.p_align = Sec.getAlign();
}
Elf_Phdr Header;
bool Closed = false;
};
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr;
typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr;
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
Writer(SymbolTable *T)
: SymTabSec(*T, StrTabSec, BssSec), DynSymSec(*T, DynStrSec, BssSec),
RelaDynSec(DynSymSec, GotSec, T->shouldUseRela()), PltSec(GotSec),
HashSec(DynSymSec), DynamicSec(*T, HashSec, RelaDynSec, BssSec),
BssSec(PltSec, GotSec, BssSec, ".bss", SHT_NOBITS,
SHF_ALLOC | SHF_WRITE) {}
void run();
private:
void createSections();
template <bool isRela>
void scanRelocs(const InputSection<ELFT> &C,
iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels);
void scanRelocs(const InputSection<ELFT> &C);
void assignAddresses();
void openFile(StringRef OutputPath);
void writeHeader();
void writeSections();
bool needsInterpSection() const {
return !SymTabSec.getSymTable().getSharedFiles().empty() &&
!Config->DynamicLinker.empty();
}
bool needsDynamicSections() const {
return !SymTabSec.getSymTable().getSharedFiles().empty() || Config->Shared;
}
unsigned getVAStart() const { return Config->Shared ? 0 : VAStart; }
std::unique_ptr<llvm::FileOutputBuffer> Buffer;
llvm::SpecificBumpPtrAllocator<OutputSection<ELFT>> CAlloc;
std::vector<OutputSectionBase<ELFT::Is64Bits> *> OutputSections;
unsigned getNumSections() const { return OutputSections.size() + 1; }
llvm::BumpPtrAllocator PAlloc;
std::vector<ProgramHeader<ELFT> *> PHDRs;
ProgramHeader<ELFT> FileHeaderPHDR{PT_LOAD, PF_R, 0, 0};
ProgramHeader<ELFT> InterpPHDR{PT_INTERP, 0, 0, 0};
ProgramHeader<ELFT> DynamicPHDR{PT_DYNAMIC, 0, 0, 0};
uintX_t FileSize;
uintX_t ProgramHeaderOff;
uintX_t SectionHeaderOff;
StringTableSection<ELFT::Is64Bits> StrTabSec = { /*dynamic=*/false };
StringTableSection<ELFT::Is64Bits> DynStrSec = { /*dynamic=*/true };
lld::elf2::SymbolTableSection<ELFT> SymTabSec;
lld::elf2::SymbolTableSection<ELFT> DynSymSec;
RelocationSection<ELFT> RelaDynSec;
GotSection<ELFT> GotSec;
PltSection<ELFT> PltSec;
HashTableSection<ELFT> HashSec;
DynamicSection<ELFT> DynamicSec;
InterpSection<ELFT::Is64Bits> InterpSec;
OutputSection<ELFT> BssSec;
};
} // anonymous namespace
namespace lld {
namespace elf2 {
template <class ELFT>
void writeResult(SymbolTable *Symtab) { Writer<ELFT>(Symtab).run(); }
template void writeResult<ELF32LE>(SymbolTable *);
template void writeResult<ELF32BE>(SymbolTable *);
template void writeResult<ELF64LE>(SymbolTable *);
template void writeResult<ELF64BE>(SymbolTable *);
} // namespace elf2
} // namespace lld
// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
createSections();
assignAddresses();
openFile(Config->OutputFile);
writeHeader();
writeSections();
error(Buffer->commit());
}
namespace {
template <bool Is64Bits> struct SectionKey {
typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
StringRef Name;
uint32_t Type;
uintX_t Flags;
};
}
namespace llvm {
template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
static SectionKey<Is64Bits> getEmptyKey() {
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0};
}
static SectionKey<Is64Bits> getTombstoneKey() {
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
0};
}
static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
return hash_combine(Val.Name, Val.Type, Val.Flags);
}
static bool isEqual(const SectionKey<Is64Bits> &LHS,
const SectionKey<Is64Bits> &RHS) {
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
LHS.Type == RHS.Type && LHS.Flags == RHS.Flags;
}
};
}
// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
template <class ELFT>
template <bool isRela>
void Writer<ELFT>::scanRelocs(
const InputSection<ELFT> &C,
iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) {
typedef Elf_Rel_Impl<ELFT, isRela> RelType;
const ObjectFile<ELFT> &File = *C.getFile();
bool IsMips64EL = File.getObj().isMips64EL();
for (const RelType &RI : Rels) {
uint32_t SymIndex = RI.getSymbol(IsMips64EL);
SymbolBody *Body = File.getSymbolBody(SymIndex);
if (!Body)
continue;
uint32_t Type = RI.getType(IsMips64EL);
if (Target->relocNeedsPlt(Type, *Body)) {
if (Body->isInPlt())
continue;
PltSec.addEntry(Body);
}
if (Target->relocNeedsGot(Type, *Body)) {
if (Body->isInGot())
continue;
GotSec.addEntry(Body);
} else if (!isa<SharedSymbol<ELFT>>(Body))
continue;
Body->setUsedInDynamicReloc();
RelaDynSec.addReloc({C, RI});
}
}
template <class ELFT>
void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) {
ObjectFile<ELFT> *File = C.getFile();
ELFFile<ELFT> &EObj = File->getObj();
if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
return;
for (const Elf_Shdr *RelSec : C.RelocSections) {
if (RelSec->sh_type == SHT_RELA)
scanRelocs(C, EObj.relas(RelSec));
else
scanRelocs(C, EObj.rels(RelSec));
}
}
template <class ELFT>
static void reportUndefined(const SymbolTable &S, const SymbolBody &Sym) {
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
if (Config->Shared && !Config->NoUndefined)
return;
const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym;
ELFFileBase *SymFile = nullptr;
for (const std::unique_ptr<ObjectFileBase> &F : S.getObjectFiles()) {
const auto &File = cast<ObjectFile<ELFT>>(*F);
Elf_Sym_Range Syms = File.getObj().symbols(File.getSymbolTable());
if (&SymE > Syms.begin() && &SymE < Syms.end())
SymFile = F.get();
}
std::string Message = "undefined symbol: " + Sym.getName().str();
if (SymFile)
Message += " in " + SymFile->getName().str();
if (Config->NoInhibitExec)
warning(Message);
else
error(Message);
}
// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::createSections() {
SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSection<ELFT> *> Map;
OutputSections.push_back(&BssSec);
Map[{BssSec.getName(), BssSec.getType(), BssSec.getFlags()}] = &BssSec;
SymbolTable &Symtab = SymTabSec.getSymTable();
for (const std::unique_ptr<ObjectFileBase> &FileB : Symtab.getObjectFiles()) {
auto &File = cast<ObjectFile<ELFT>>(*FileB);
if (!Config->DiscardAll) {
Elf_Sym_Range Syms = File.getLocalSymbols();
for (const Elf_Sym &Sym : Syms) {
ErrorOr<StringRef> SymName = Sym.getName(File.getStringTable());
if (SymName && shouldKeepInSymtab(*SymName))
SymTabSec.addSymbol(*SymName, true);
}
}
for (InputSection<ELFT> *C : File.getSections()) {
if (!C)
continue;
const Elf_Shdr *H = C->getSectionHdr();
SectionKey<ELFT::Is64Bits> Key{C->getSectionName(), H->sh_type,
H->sh_flags};
OutputSection<ELFT> *&Sec = Map[Key];
if (!Sec) {
Sec = new (CAlloc.Allocate()) OutputSection<ELFT>(
PltSec, GotSec, BssSec, Key.Name, Key.Type, Key.Flags);
OutputSections.push_back(Sec);
}
Sec->addSection(C);
scanRelocs(*C);
}
}
DynamicSec.PreInitArraySec =
Map.lookup({".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC});
DynamicSec.InitArraySec =
Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC});
DynamicSec.FiniArraySec =
Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC});
if (OutputSection<ELFT> *OS = DynamicSec.InitArraySec) {
Symtab.addSyntheticSym<ELFT>("__init_array_start", *OS, 0);
Symtab.addSyntheticSym<ELFT>("__init_array_end", *OS, OS->getSize());
} else {
Symtab.addIgnoredSym<ELFT>("__init_array_start");
Symtab.addIgnoredSym<ELFT>("__init_array_end");
}
// FIXME: Try to avoid the extra walk over all global symbols.
std::vector<DefinedCommon<ELFT> *> CommonSymbols;
for (auto &P : Symtab.getSymbols()) {
StringRef Name = P.first;
SymbolBody *Body = P.second->Body;
if (auto *U = dyn_cast<Undefined<ELFT>>(Body)) {
if (!U->isWeak() && !U->canKeepUndefined())
reportUndefined<ELFT>(Symtab, *Body);
}
if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body))
CommonSymbols.push_back(C);
if (!includeInSymtab(*Body))
continue;
SymTabSec.addSymbol(Name);
if (needsDynamicSections() && includeInDynamicSymtab(*Body))
HashSec.addSymbol(Body);
}
// Sort the common symbols by alignment as an heuristic to pack them better.
std::stable_sort(
CommonSymbols.begin(), CommonSymbols.end(),
[](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) {
return A->MaxAlignment > B->MaxAlignment;
});
uintX_t Off = BssSec.getSize();
for (DefinedCommon<ELFT> *C : CommonSymbols) {
const Elf_Sym &Sym = C->Sym;
uintX_t Align = C->MaxAlignment;
Off = RoundUpToAlignment(Off, Align);
C->OffsetInBSS = Off;
Off += Sym.st_size;
}
BssSec.setSize(Off);
OutputSections.push_back(&SymTabSec);
if (needsDynamicSections()) {
if (needsInterpSection())
OutputSections.push_back(&InterpSec);
OutputSections.push_back(&DynSymSec);
OutputSections.push_back(&HashSec);
OutputSections.push_back(&DynamicSec);
OutputSections.push_back(&DynStrSec);
if (RelaDynSec.hasRelocs())
OutputSections.push_back(&RelaDynSec);
}
if (!GotSec.empty())
OutputSections.push_back(&GotSec);
if (!PltSec.empty())
OutputSections.push_back(&PltSec);
std::stable_sort(
OutputSections.begin(), OutputSections.end(),
[](OutputSectionBase<ELFT::Is64Bits> *A,
OutputSectionBase<ELFT::Is64Bits> *B) {
uintX_t AFlags = A->getFlags();
uintX_t BFlags = B->getFlags();
// Allocatable sections go first to reduce the total PT_LOAD size and
// so debug info doesn't change addresses in actual code.
bool AIsAlloc = AFlags & SHF_ALLOC;
bool BIsAlloc = BFlags & SHF_ALLOC;
if (AIsAlloc != BIsAlloc)
return AIsAlloc;
// We don't have any special requirements for the relative order of
// two non allocatable sections.
if (!AIsAlloc)
return false;
// We want the read only sections first so that they go in the PT_LOAD
// covering the program headers at the start of the file.
bool AIsWritable = AFlags & SHF_WRITE;
bool BIsWritable = BFlags & SHF_WRITE;
if (AIsWritable != BIsWritable)
return BIsWritable;
// For a corresponding reason, put non exec sections first (the program
// header PT_LOAD is not executable).
bool AIsExec = AFlags & SHF_EXECINSTR;
bool BIsExec = BFlags & SHF_EXECINSTR;
if (AIsExec != BIsExec)
return BIsExec;
// If we got here we know that both A and B and in the same PT_LOAD.
// The last requirement we have is to put nobits section last. The
// reason is that the only thing the dynamic linker will see about
// them is a p_memsz that is larger than p_filesz. Seeing that it
// zeros the end of the PT_LOAD, so that has to correspond to the
// nobits sections.
return A->getType() != SHT_NOBITS && B->getType() == SHT_NOBITS;
});
// Always put StrTabSec last so that no section names are added to it after
// it's finalized.
OutputSections.push_back(&StrTabSec);
for (unsigned I = 0, N = OutputSections.size(); I < N; ++I)
OutputSections[I]->setSectionIndex(I + 1);
// Fill the DynStrSec early.
DynamicSec.finalize();
}
template <class ELFT>
static bool needsPHDR(OutputSectionBase<ELFT::Is64Bits> *Sec) {
return Sec->getFlags() & SHF_ALLOC;
}
// Visits all sections to assign incremental, non-overlapping RVAs and
// file offsets.
template <class ELFT> void Writer<ELFT>::assignAddresses() {
assert(!OutputSections.empty() && "No output sections to layout!");
uintX_t VA = getVAStart();
uintX_t FileOff = 0;
FileOff += sizeof(Elf_Ehdr);
VA += sizeof(Elf_Ehdr);
// Reserve space for PHDRs.
ProgramHeaderOff = FileOff;
FileOff = RoundUpToAlignment(FileOff, PageSize);
VA = RoundUpToAlignment(VA, PageSize);
if (needsInterpSection())
PHDRs.push_back(&InterpPHDR);
// Create a PHDR for the file header.
PHDRs.push_back(&FileHeaderPHDR);
FileHeaderPHDR.Header.p_vaddr = getVAStart();
FileHeaderPHDR.Header.p_paddr = getVAStart();
FileHeaderPHDR.Header.p_align = PageSize;
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections) {
StrTabSec.add(Sec->getName());
Sec->finalize();
if (Sec->getSize()) {
uintX_t Flags = toPHDRFlags(Sec->getFlags());
ProgramHeader<ELFT> *Last = PHDRs.back();
if (Last->Header.p_flags != Flags || !needsPHDR<ELFT>(Sec)) {
// Flags changed. End current PHDR and potentially create a new one.
if (!Last->Closed) {
Last->Header.p_filesz = FileOff - Last->Header.p_offset;
Last->Header.p_memsz = VA - Last->Header.p_vaddr;
Last->Closed = true;
}
if (needsPHDR<ELFT>(Sec)) {
VA = RoundUpToAlignment(VA, PageSize);
FileOff = RoundUpToAlignment(FileOff, PageSize);
PHDRs.push_back(new (PAlloc)
ProgramHeader<ELFT>(PT_LOAD, Flags, FileOff, VA));
}
}
}
uintX_t Align = Sec->getAlign();
uintX_t Size = Sec->getSize();
if (Sec->getFlags() & SHF_ALLOC) {
VA = RoundUpToAlignment(VA, Align);
Sec->setVA(VA);
VA += Size;
}
FileOff = RoundUpToAlignment(FileOff, Align);
Sec->setFileOffset(FileOff);
if (Sec->getType() != SHT_NOBITS)
FileOff += Size;
}
// Add a PHDR for the dynamic table.
if (needsDynamicSections())
PHDRs.push_back(&DynamicPHDR);
FileOff += OffsetToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4);
// Add space for section headers.
SectionHeaderOff = FileOff;
FileOff += getNumSections() * sizeof(Elf_Shdr);
FileSize = FileOff;
}
template <class ELFT> void Writer<ELFT>::writeHeader() {
uint8_t *Buf = Buffer->getBufferStart();
auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
EHdr->e_ident[EI_MAG0] = 0x7F;
EHdr->e_ident[EI_MAG1] = 0x45;
EHdr->e_ident[EI_MAG2] = 0x4C;
EHdr->e_ident[EI_MAG3] = 0x46;
EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little
? ELFDATA2LSB
: ELFDATA2MSB;
EHdr->e_ident[EI_VERSION] = EV_CURRENT;
const SymbolTable &Symtab = SymTabSec.getSymTable();
auto &FirstObj = cast<ObjectFile<ELFT>>(*Symtab.getFirstELF());
EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
// FIXME: Generalize the segment construction similar to how we create
// output sections.
EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC;
EHdr->e_machine = FirstObj.getEMachine();
EHdr->e_version = EV_CURRENT;
SymbolBody *Entry = Symtab.getEntrySym();
EHdr->e_entry =
Entry ? getSymVA(cast<ELFSymbolBody<ELFT>>(*Entry), BssSec) : 0;
EHdr->e_phoff = ProgramHeaderOff;
EHdr->e_shoff = SectionHeaderOff;
EHdr->e_ehsize = sizeof(Elf_Ehdr);
EHdr->e_phentsize = sizeof(Elf_Phdr);
EHdr->e_phnum = PHDRs.size();
EHdr->e_shentsize = sizeof(Elf_Shdr);
EHdr->e_shnum = getNumSections();
EHdr->e_shstrndx = StrTabSec.getSectionIndex();
// If nothing was merged into the file header PT_LOAD, set the size correctly.
if (FileHeaderPHDR.Header.p_filesz == PageSize) {
uint64_t Size = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * PHDRs.size();
FileHeaderPHDR.Header.p_filesz = Size;
FileHeaderPHDR.Header.p_memsz = Size;
}
if (needsInterpSection())
InterpPHDR.setValuesFromSection(InterpSec);
if (needsDynamicSections())
DynamicPHDR.setValuesFromSection(DynamicSec);
auto PHdrs = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
for (ProgramHeader<ELFT> *PHDR : PHDRs)
*PHdrs++ = PHDR->Header;
auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
// First entry is null.
++SHdrs;
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections) {
Sec->setNameOffset(StrTabSec.getFileOff(Sec->getName()));
Sec->template writeHeaderTo<ELFT::TargetEndianness>(SHdrs++);
}
}
template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) {
ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable);
error(BufferOrErr, Twine("failed to open ") + Path);
Buffer = std::move(*BufferOrErr);
}
// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
uint8_t *Buf = Buffer->getBufferStart();
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections)
Sec->writeTo(Buf + Sec->getFileOff());
}
|