1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol Table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "Symbols.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf2;
template <class ELFT> SymbolTable<ELFT>::SymbolTable() {}
template <class ELFT>
static void checkCompatibility(InputFile *FileP) {
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
if (!F)
return;
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
return;
StringRef A = F->getName();
StringRef B = Config->Emulation;
if (B.empty())
B = Config->FirstElf->getName();
error(A + " is incompatible with " + B);
}
template <class ELFT>
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
InputFile *FileP = File.get();
checkCompatibility<ELFT>(FileP);
// .a file
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
F->parse();
for (Lazy &Sym : F->getLazySymbols())
addLazy(&Sym);
return;
}
// .so file
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
// DSOs are uniquified not by filename but by soname.
F->parseSoName();
if (!IncludedSoNames.insert(F->getSoName()).second)
return;
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
F->parse();
for (SharedSymbol<ELFT> &B : F->getSharedSymbols())
resolve(&B);
return;
}
// .o file
auto *F = cast<ObjectFile<ELFT>>(FileP);
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
F->parse(Comdats);
for (SymbolBody *B : F->getSymbols())
resolve(B);
}
// Add an undefined symbol.
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefined(StringRef Name) {
auto *Sym = new (Alloc) Undefined(Name, false, STV_DEFAULT, false);
resolve(Sym);
return Sym;
}
// Add an undefined symbol. Unlike addUndefined, that symbol
// doesn't have to be resolved, thus "opt" (optional).
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefinedOpt(StringRef Name) {
auto *Sym = new (Alloc) Undefined(Name, false, STV_HIDDEN, true);
resolve(Sym);
return Sym;
}
template <class ELFT>
void SymbolTable<ELFT>::addAbsolute(StringRef Name,
typename ELFFile<ELFT>::Elf_Sym &ESym) {
resolve(new (Alloc) DefinedRegular<ELFT>(Name, ESym, nullptr));
}
template <class ELFT>
void SymbolTable<ELFT>::addSynthetic(StringRef Name,
OutputSectionBase<ELFT> &Section,
typename ELFFile<ELFT>::uintX_t Value) {
auto *Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, Value, Section);
resolve(Sym);
}
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addIgnored(StringRef Name) {
auto *Sym = new (Alloc)
DefinedRegular<ELFT>(Name, DefinedRegular<ELFT>::IgnoreUndef, nullptr);
resolve(Sym);
return Sym;
}
template <class ELFT> bool SymbolTable<ELFT>::isUndefined(StringRef Name) {
if (SymbolBody *Sym = find(Name))
return Sym->isUndefined();
return false;
}
// Returns a file from which symbol B was created.
// If B does not belong to any file in ObjectFiles, returns a nullptr.
template <class ELFT>
ELFFileBase<ELFT> *
elf2::findFile(ArrayRef<std::unique_ptr<ObjectFile<ELFT>>> ObjectFiles,
const SymbolBody *B) {
for (const std::unique_ptr<ObjectFile<ELFT>> &F : ObjectFiles) {
ArrayRef<SymbolBody *> Syms = F->getSymbols();
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
return F.get();
}
return nullptr;
}
template <class ELFT>
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Old, SymbolBody *New) {
ELFFileBase<ELFT> *OldFile = findFile<ELFT>(ObjectFiles, Old);
ELFFileBase<ELFT> *NewFile = findFile<ELFT>(ObjectFiles, New);
StringRef Sym = Old->getName();
StringRef F1 = OldFile ? OldFile->getName() : "(internal)";
StringRef F2 = NewFile ? NewFile->getName() : "(internal)";
return (Sym + " in " + F1 + " and " + F2).str();
}
// This function resolves conflicts if there's an existing symbol with
// the same name. Decisions are made based on symbol type.
template <class ELFT> void SymbolTable<ELFT>::resolve(SymbolBody *New) {
Symbol *Sym = insert(New);
if (Sym->Body == New)
return;
SymbolBody *Existing = Sym->Body;
if (Lazy *L = dyn_cast<Lazy>(Existing)) {
if (auto *Undef = dyn_cast<Undefined>(New)) {
addMemberFile(Undef, L);
return;
}
// Found a definition for something also in an archive.
// Ignore the archive definition.
Sym->Body = New;
return;
}
if (New->isTls() != Existing->isTls())
error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New));
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
// equivalent (conflicting), or more preferable, respectively.
int comp = Existing->compare<ELFT>(New);
if (comp == 0) {
std::string S = "duplicate symbol: " + conflictMsg(Existing, New);
if (!Config->AllowMultipleDefinition)
error(S);
warning(S);
return;
}
if (comp < 0)
Sym->Body = New;
}
template <class ELFT> Symbol *SymbolTable<ELFT>::insert(SymbolBody *New) {
// Find an existing Symbol or create and insert a new one.
StringRef Name = New->getName();
Symbol *&Sym = Symtab[Name];
if (!Sym)
Sym = new (Alloc) Symbol{New};
New->setBackref(Sym);
return Sym;
}
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
auto It = Symtab.find(Name);
if (It == Symtab.end())
return nullptr;
return It->second->Body;
}
template <class ELFT> void SymbolTable<ELFT>::addLazy(Lazy *L) {
Symbol *Sym = insert(L);
if (Sym->Body == L)
return;
if (auto *Undef = dyn_cast<Undefined>(Sym->Body)) {
Sym->Body = L;
addMemberFile(Undef, L);
}
}
template <class ELFT>
void SymbolTable<ELFT>::addMemberFile(Undefined *Undef, Lazy *L) {
// Weak undefined symbols should not fetch members from archives.
// If we were to keep old symbol we would not know that an archive member was
// available if a strong undefined symbol shows up afterwards in the link.
// If a strong undefined symbol never shows up, this lazy symbol will
// get to the end of the link and must be treated as the weak undefined one.
// We set UsedInRegularObj in a similar way to what is done with shared
// symbols and mark it as weak to reduce how many special cases are needed.
if (Undef->isWeak()) {
L->setUsedInRegularObj();
L->setWeak();
return;
}
// Fetch a member file that has the definition for L.
// getMember returns nullptr if the member was already read from the library.
if (std::unique_ptr<InputFile> File = L->getMember())
addFile(std::move(File));
}
// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
for (StringRef U : File->getUndefinedSymbols())
if (SymbolBody *Sym = find(U))
if (Sym->isDefined())
Sym->setUsedInDynamicReloc();
}
template class lld::elf2::SymbolTable<ELF32LE>;
template class lld::elf2::SymbolTable<ELF32BE>;
template class lld::elf2::SymbolTable<ELF64LE>;
template class lld::elf2::SymbolTable<ELF64BE>;
template ELFFileBase<ELF32LE> *
lld::elf2::findFile(ArrayRef<std::unique_ptr<ObjectFile<ELF32LE>>>,
const SymbolBody *);
template ELFFileBase<ELF32BE> *
lld::elf2::findFile(ArrayRef<std::unique_ptr<ObjectFile<ELF32BE>>>,
const SymbolBody *);
template ELFFileBase<ELF64LE> *
lld::elf2::findFile(ArrayRef<std::unique_ptr<ObjectFile<ELF64LE>>>,
const SymbolBody *);
template ELFFileBase<ELF64BE> *
lld::elf2::findFile(ArrayRef<std::unique_ptr<ObjectFile<ELF64BE>>>,
const SymbolBody *);
|