summaryrefslogtreecommitdiffstats
path: root/lld/ELF/OutputSections.cpp
blob: b04d969548d9cfe56a36109e89615a50e196743c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
//===- OutputSections.cpp -------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Config.h"
#include "EhFrame.h"
#include "GdbIndex.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "Strings.h"
#include "SymbolListFile.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Core/Parallel.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

using namespace lld;
using namespace lld::elf;

OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type,
                                     uint64_t Flags)
    : Name(Name) {
  this->Type = Type;
  this->Flags = Flags;
  this->Addralign = 1;
}

uint32_t OutputSectionBase::getPhdrFlags() const {
  uint32_t Ret = PF_R;
  if (Flags & SHF_WRITE)
    Ret |= PF_W;
  if (Flags & SHF_EXECINSTR)
    Ret |= PF_X;
  return Ret;
}

template <class ELFT>
void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) {
  Shdr->sh_entsize = Entsize;
  Shdr->sh_addralign = Addralign;
  Shdr->sh_type = Type;
  Shdr->sh_offset = Offset;
  Shdr->sh_flags = Flags;
  Shdr->sh_info = Info;
  Shdr->sh_link = Link;
  Shdr->sh_addr = Addr;
  Shdr->sh_size = Size;
  Shdr->sh_name = ShName;
}

template <class ELFT>
GdbIndexSection<ELFT>::GdbIndexSection()
    : OutputSectionBase(".gdb_index", SHT_PROGBITS, 0) {}

template <class ELFT> void GdbIndexSection<ELFT>::parseDebugSections() {
  std::vector<InputSection<ELFT> *> &IS =
      static_cast<OutputSection<ELFT> *>(Out<ELFT>::DebugInfo)->Sections;

  for (InputSection<ELFT> *I : IS)
    readDwarf(I);
}

template <class ELFT>
void GdbIndexSection<ELFT>::readDwarf(InputSection<ELFT> *I) {
  std::vector<std::pair<uintX_t, uintX_t>> CuList = readCuList(I);
  CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end());
}

template <class ELFT> void GdbIndexSection<ELFT>::finalize() {
  parseDebugSections();

  // GdbIndex header consist from version fields
  // and 5 more fields with different kinds of offsets.
  CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize;
  this->Size = CuTypesOffset;
}

template <class ELFT> void GdbIndexSection<ELFT>::writeTo(uint8_t *Buf) {
  write32le(Buf, 7);                  // Write Version
  write32le(Buf + 4, CuListOffset);   // CU list offset
  write32le(Buf + 8, CuTypesOffset);  // Types CU list offset
  write32le(Buf + 12, CuTypesOffset); // Address area offset
  write32le(Buf + 16, CuTypesOffset); // Symbol table offset
  write32le(Buf + 20, CuTypesOffset); // Constant pool offset
  Buf += 24;

  // Write the CU list.
  for (std::pair<uintX_t, uintX_t> CU : CompilationUnits) {
    write64le(Buf, CU.first);
    write64le(Buf + 8, CU.second);
    Buf += 16;
  }
}

// Returns the number of version definition entries. Because the first entry
// is for the version definition itself, it is the number of versioned symbols
// plus one. Note that we don't support multiple versions yet.
static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }

template <class ELFT>
EhFrameHeader<ELFT>::EhFrameHeader()
    : OutputSectionBase(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {}

// .eh_frame_hdr contains a binary search table of pointers to FDEs.
// Each entry of the search table consists of two values,
// the starting PC from where FDEs covers, and the FDE's address.
// It is sorted by PC.
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;

  // Sort the FDE list by their PC and uniqueify. Usually there is only
  // one FDE for a PC (i.e. function), but if ICF merges two functions
  // into one, there can be more than one FDEs pointing to the address.
  auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
  std::stable_sort(Fdes.begin(), Fdes.end(), Less);
  auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
  Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());

  Buf[0] = 1;
  Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
  Buf[2] = DW_EH_PE_udata4;
  Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
  write32<E>(Buf + 4, Out<ELFT>::EhFrame->Addr - this->Addr - 4);
  write32<E>(Buf + 8, Fdes.size());
  Buf += 12;

  uintX_t VA = this->Addr;
  for (FdeData &Fde : Fdes) {
    write32<E>(Buf, Fde.Pc - VA);
    write32<E>(Buf + 4, Fde.FdeVA - VA);
    Buf += 8;
  }
}

template <class ELFT> void EhFrameHeader<ELFT>::finalize() {
  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
  this->Size = 12 + Out<ELFT>::EhFrame->NumFdes * 8;
}

template <class ELFT>
void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
  Fdes.push_back({Pc, FdeVA});
}

template <class ELFT> static uint64_t getEntsize(uint32_t Type) {
  switch (Type) {
  case SHT_RELA:
    return sizeof(typename ELFT::Rela);
  case SHT_REL:
    return sizeof(typename ELFT::Rel);
  case SHT_MIPS_REGINFO:
    return sizeof(Elf_Mips_RegInfo<ELFT>);
  case SHT_MIPS_OPTIONS:
    return sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
  case SHT_MIPS_ABIFLAGS:
    return sizeof(Elf_Mips_ABIFlags<ELFT>);
  default:
    return 0;
  }
}

template <class ELFT>
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
    : OutputSectionBase(Name, Type, Flags) {
  this->Entsize = getEntsize<ELFT>(Type);
}

template <typename ELFT>
static bool compareByFilePosition(InputSection<ELFT> *A,
                                  InputSection<ELFT> *B) {
  auto *LA = cast<InputSection<ELFT>>(A->getLinkOrderDep());
  auto *LB = cast<InputSection<ELFT>>(B->getLinkOrderDep());
  OutputSectionBase *AOut = LA->OutSec;
  OutputSectionBase *BOut = LB->OutSec;
  if (AOut != BOut)
    return AOut->SectionIndex < BOut->SectionIndex;
  return LA->OutSecOff < LB->OutSecOff;
}

template <class ELFT> void OutputSection<ELFT>::finalize() {
  if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
    std::sort(Sections.begin(), Sections.end(), compareByFilePosition<ELFT>);
    Size = 0;
    assignOffsets();

    // We must preserve the link order dependency of sections with the
    // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
    // need to translate the InputSection sh_link to the OutputSection sh_link,
    // all InputSections in the OutputSection have the same dependency.
    if (auto *D = this->Sections.front()->getLinkOrderDep())
      this->Link = D->OutSec->SectionIndex;
  }

  uint32_t Type = this->Type;
  if (!Config->Relocatable || (Type != SHT_RELA && Type != SHT_REL))
    return;

  this->Link = In<ELFT>::SymTab->OutSec->SectionIndex;
  // sh_info for SHT_REL[A] sections should contain the section header index of
  // the section to which the relocation applies.
  InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
  this->Info = S->OutSec->SectionIndex;
}

template <class ELFT>
void OutputSection<ELFT>::addSection(InputSectionData *C) {
  assert(C->Live);
  auto *S = cast<InputSection<ELFT>>(C);
  Sections.push_back(S);
  S->OutSec = this;
  this->updateAlignment(S->Alignment);
  // Keep sh_entsize value of the input section to be able to perform merging
  // later during a final linking using the generated relocatable object.
  if (Config->Relocatable && (S->Flags & SHF_MERGE))
    this->Entsize = S->Entsize;
}

// This function is called after we sort input sections
// and scan relocations to setup sections' offsets.
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
  uintX_t Off = this->Size;
  for (InputSection<ELFT> *S : Sections) {
    Off = alignTo(Off, S->Alignment);
    S->OutSecOff = Off;
    Off += S->getSize();
  }
  this->Size = Off;
}

template <class ELFT>
void OutputSection<ELFT>::sort(
    std::function<unsigned(InputSection<ELFT> *S)> Order) {
  typedef std::pair<unsigned, InputSection<ELFT> *> Pair;
  auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };

  std::vector<Pair> V;
  for (InputSection<ELFT> *S : Sections)
    V.push_back({Order(S), S});
  std::stable_sort(V.begin(), V.end(), Comp);
  Sections.clear();
  for (Pair &P : V)
    Sections.push_back(P.second);
}

// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
  // Sort sections by priority.
  sort([](InputSection<ELFT> *S) { return getPriority(S->Name); });
}

// Returns true if S matches /Filename.?\.o$/.
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
  if (!S.endswith(".o"))
    return false;
  S = S.drop_back(2);
  if (S.endswith(Filename))
    return true;
  return !S.empty() && S.drop_back().endswith(Filename);
}

static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }

// .ctors and .dtors are sorted by this priority from highest to lowest.
//
//  1. The section was contained in crtbegin (crtbegin contains
//     some sentinel value in its .ctors and .dtors so that the runtime
//     can find the beginning of the sections.)
//
//  2. The section has an optional priority value in the form of ".ctors.N"
//     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
//     they are compared as string rather than number.
//
//  3. The section is just ".ctors" or ".dtors".
//
//  4. The section was contained in crtend, which contains an end marker.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
template <class ELFT>
static bool compCtors(const InputSection<ELFT> *A,
                      const InputSection<ELFT> *B) {
  bool BeginA = isCrtbegin(A->getFile()->getName());
  bool BeginB = isCrtbegin(B->getFile()->getName());
  if (BeginA != BeginB)
    return BeginA;
  bool EndA = isCrtend(A->getFile()->getName());
  bool EndB = isCrtend(B->getFile()->getName());
  if (EndA != EndB)
    return EndB;
  StringRef X = A->Name;
  StringRef Y = B->Name;
  assert(X.startswith(".ctors") || X.startswith(".dtors"));
  assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
  X = X.substr(6);
  Y = Y.substr(6);
  if (X.empty() && Y.empty())
    return false;
  return X < Y;
}

// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
  std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
}

static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
  size_t I = 0;
  for (; I + A.size() < Size; I += A.size())
    memcpy(Buf + I, A.data(), A.size());
  memcpy(Buf + I, A.data(), Size - I);
}

template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
  ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
  if (!Filler.empty())
    fill(Buf, this->Size, Filler);
  auto Fn = [=](InputSection<ELFT> *IS) { IS->writeTo(Buf); };
  if (Config->Threads)
    parallel_for_each(Sections.begin(), Sections.end(), Fn);
  else
    std::for_each(Sections.begin(), Sections.end(), Fn);
  // Linker scripts may have BYTE()-family commands with which you
  // can write arbitrary bytes to the output. Process them if any.
  Script<ELFT>::X->writeDataBytes(this->Name, Buf);
}

template <class ELFT>
EhOutputSection<ELFT>::EhOutputSection()
    : OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}

// Search for an existing CIE record or create a new one.
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT>
template <class RelTy>
CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece,
                                         EhInputSection<ELFT> *Sec,
                                         ArrayRef<RelTy> Rels) {
  const endianness E = ELFT::TargetEndianness;
  if (read32<E>(Piece.data().data() + 4) != 0)
    fatal("CIE expected at beginning of .eh_frame: " + Sec->Name);

  SymbolBody *Personality = nullptr;
  unsigned FirstRelI = Piece.FirstRelocation;
  if (FirstRelI != (unsigned)-1)
    Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]);

  // Search for an existing CIE by CIE contents/relocation target pair.
  CieRecord *Cie = &CieMap[{Piece.data(), Personality}];

  // If not found, create a new one.
  if (Cie->Piece == nullptr) {
    Cie->Piece = &Piece;
    Cies.push_back(Cie);
  }
  return Cie;
}

// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT>
template <class RelTy>
bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece,
                                      EhInputSection<ELFT> *Sec,
                                      ArrayRef<RelTy> Rels) {
  unsigned FirstRelI = Piece.FirstRelocation;
  if (FirstRelI == (unsigned)-1)
    fatal("FDE doesn't reference another section");
  const RelTy &Rel = Rels[FirstRelI];
  SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel);
  auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
  if (!D || !D->Section)
    return false;
  InputSectionBase<ELFT> *Target = D->Section->Repl;
  return Target && Target->Live;
}

// .eh_frame is a sequence of CIE or FDE records. In general, there
// is one CIE record per input object file which is followed by
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT>
template <class RelTy>
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
                                          ArrayRef<RelTy> Rels) {
  const endianness E = ELFT::TargetEndianness;

  DenseMap<size_t, CieRecord *> OffsetToCie;
  for (EhSectionPiece &Piece : Sec->Pieces) {
    // The empty record is the end marker.
    if (Piece.size() == 4)
      return;

    size_t Offset = Piece.InputOff;
    uint32_t ID = read32<E>(Piece.data().data() + 4);
    if (ID == 0) {
      OffsetToCie[Offset] = addCie(Piece, Sec, Rels);
      continue;
    }

    uint32_t CieOffset = Offset + 4 - ID;
    CieRecord *Cie = OffsetToCie[CieOffset];
    if (!Cie)
      fatal("invalid CIE reference");

    if (!isFdeLive(Piece, Sec, Rels))
      continue;
    Cie->FdePieces.push_back(&Piece);
    NumFdes++;
  }
}

template <class ELFT>
void EhOutputSection<ELFT>::addSection(InputSectionData *C) {
  auto *Sec = cast<EhInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  Sections.push_back(Sec);

  // .eh_frame is a sequence of CIE or FDE records. This function
  // splits it into pieces so that we can call
  // SplitInputSection::getSectionPiece on the section.
  Sec->split();
  if (Sec->Pieces.empty())
    return;

  if (Sec->NumRelocations) {
    if (Sec->AreRelocsRela)
      addSectionAux(Sec, Sec->relas());
    else
      addSectionAux(Sec, Sec->rels());
    return;
  }
  addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
}

template <class ELFT>
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
  memcpy(Buf, D.data(), D.size());

  // Fix the size field. -4 since size does not include the size field itself.
  const endianness E = ELFT::TargetEndianness;
  write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
}

template <class ELFT> void EhOutputSection<ELFT>::finalize() {
  if (this->Size)
    return; // Already finalized.

  size_t Off = 0;
  for (CieRecord *Cie : Cies) {
    Cie->Piece->OutputOff = Off;
    Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));

    for (EhSectionPiece *Fde : Cie->FdePieces) {
      Fde->OutputOff = Off;
      Off += alignTo(Fde->size(), sizeof(uintX_t));
    }
  }
  this->Size = Off;
}

template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
  const endianness E = ELFT::TargetEndianness;
  switch (Size) {
  case DW_EH_PE_udata2:
    return read16<E>(Buf);
  case DW_EH_PE_udata4:
    return read32<E>(Buf);
  case DW_EH_PE_udata8:
    return read64<E>(Buf);
  case DW_EH_PE_absptr:
    if (ELFT::Is64Bits)
      return read64<E>(Buf);
    return read32<E>(Buf);
  }
  fatal("unknown FDE size encoding");
}

// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
// We need it to create .eh_frame_hdr section.
template <class ELFT>
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
                                                    uint8_t Enc) {
  // The starting address to which this FDE applies is
  // stored at FDE + 8 byte.
  size_t Off = FdeOff + 8;
  uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
  if ((Enc & 0x70) == DW_EH_PE_absptr)
    return Addr;
  if ((Enc & 0x70) == DW_EH_PE_pcrel)
    return Addr + this->Addr + Off;
  fatal("unknown FDE size relative encoding");
}

template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;
  for (CieRecord *Cie : Cies) {
    size_t CieOffset = Cie->Piece->OutputOff;
    writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());

    for (EhSectionPiece *Fde : Cie->FdePieces) {
      size_t Off = Fde->OutputOff;
      writeCieFde<ELFT>(Buf + Off, Fde->data());

      // FDE's second word should have the offset to an associated CIE.
      // Write it.
      write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
    }
  }

  for (EhInputSection<ELFT> *S : Sections)
    S->relocate(Buf, nullptr);

  // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
  // to get a FDE from an address to which FDE is applied. So here
  // we obtain two addresses and pass them to EhFrameHdr object.
  if (Out<ELFT>::EhFrameHdr) {
    for (CieRecord *Cie : Cies) {
      uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data());
      for (SectionPiece *Fde : Cie->FdePieces) {
        uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
        uintX_t FdeVA = this->Addr + Fde->OutputOff;
        Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
      }
    }
  }
}

template <class ELFT>
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
                                             uintX_t Flags, uintX_t Alignment)
    : OutputSectionBase(Name, Type, Flags),
      Builder(StringTableBuilder::RAW, Alignment) {}

template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  Builder.write(Buf);
}

template <class ELFT>
void MergeOutputSection<ELFT>::addSection(InputSectionData *C) {
  auto *Sec = cast<MergeInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  this->Entsize = Sec->Entsize;
  Sections.push_back(Sec);
}

template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
  return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2;
}

template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
  // Add all string pieces to the string table builder to create section
  // contents. If we are not tail-optimizing, offsets of strings are fixed
  // when they are added to the builder (string table builder contains a
  // hash table from strings to offsets), so we record them if available.
  for (MergeInputSection<ELFT> *Sec : Sections) {
    for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) {
      if (!Sec->Pieces[I].Live)
        continue;
      uint32_t OutputOffset = Builder.add(Sec->getData(I));

      // Save the offset in the generated string table.
      if (!shouldTailMerge())
        Sec->Pieces[I].OutputOff = OutputOffset;
    }
  }

  // Fix the string table content. After this, the contents
  // will never change.
  if (shouldTailMerge())
    Builder.finalize();
  else
    Builder.finalizeInOrder();
  this->Size = Builder.getSize();

  // finalize() fixed tail-optimized strings, so we can now get
  // offsets of strings. Get an offset for each string and save it
  // to a corresponding StringPiece for easy access.
  if (shouldTailMerge()) {
    for (MergeInputSection<ELFT> *Sec : Sections) {
      for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) {
        if (!Sec->Pieces[I].Live)
          continue;
        Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I));
      }
    }
  }
}

template <class ELFT>
VersionDefinitionSection<ELFT>::VersionDefinitionSection()
    : OutputSectionBase(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) {
  this->Addralign = sizeof(uint32_t);
}

static StringRef getFileDefName() {
  if (!Config->SoName.empty())
    return Config->SoName;
  return Config->OutputFile;
}

template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
  FileDefNameOff = In<ELFT>::DynStrTab->addString(getFileDefName());
  for (VersionDefinition &V : Config->VersionDefinitions)
    V.NameOff = In<ELFT>::DynStrTab->addString(V.Name);

  this->Size = (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
  this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;

  // sh_info should be set to the number of definitions. This fact is missed in
  // documentation, but confirmed by binutils community:
  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
  this->Info = getVerDefNum();
}

template <class ELFT>
void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
                                              StringRef Name, size_t NameOff) {
  auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
  Verdef->vd_version = 1;
  Verdef->vd_cnt = 1;
  Verdef->vd_aux = sizeof(Elf_Verdef);
  Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
  Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
  Verdef->vd_ndx = Index;
  Verdef->vd_hash = hashSysV(Name);

  auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
  Verdaux->vda_name = NameOff;
  Verdaux->vda_next = 0;
}

template <class ELFT>
void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
  writeOne(Buf, 1, getFileDefName(), FileDefNameOff);

  for (VersionDefinition &V : Config->VersionDefinitions) {
    Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
    writeOne(Buf, V.Id, V.Name, V.NameOff);
  }

  // Need to terminate the last version definition.
  Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
  Verdef->vd_next = 0;
}

template <class ELFT>
VersionTableSection<ELFT>::VersionTableSection()
    : OutputSectionBase(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
  this->Addralign = sizeof(uint16_t);
}

template <class ELFT> void VersionTableSection<ELFT>::finalize() {
  this->Size =
      sizeof(Elf_Versym) * (In<ELFT>::DynSymTab->getSymbols().size() + 1);
  this->Entsize = sizeof(Elf_Versym);
  // At the moment of june 2016 GNU docs does not mention that sh_link field
  // should be set, but Sun docs do. Also readelf relies on this field.
  this->Link = In<ELFT>::DynSymTab->OutSec->SectionIndex;
}

template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
  auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
  for (const SymbolTableEntry &S : In<ELFT>::DynSymTab->getSymbols()) {
    OutVersym->vs_index = S.Symbol->symbol()->VersionId;
    ++OutVersym;
  }
}

template <class ELFT>
VersionNeedSection<ELFT>::VersionNeedSection()
    : OutputSectionBase(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
  this->Addralign = sizeof(uint32_t);

  // Identifiers in verneed section start at 2 because 0 and 1 are reserved
  // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
  // First identifiers are reserved by verdef section if it exist.
  NextIndex = getVerDefNum() + 1;
}

template <class ELFT>
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
  if (!SS->Verdef) {
    SS->symbol()->VersionId = VER_NDX_GLOBAL;
    return;
  }
  SharedFile<ELFT> *F = SS->file();
  // If we don't already know that we need an Elf_Verneed for this DSO, prepare
  // to create one by adding it to our needed list and creating a dynstr entry
  // for the soname.
  if (F->VerdefMap.empty())
    Needed.push_back({F, In<ELFT>::DynStrTab->addString(F->getSoName())});
  typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
  // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
  // prepare to create one by allocating a version identifier and creating a
  // dynstr entry for the version name.
  if (NV.Index == 0) {
    NV.StrTab = In<ELFT>::DynStrTab->addString(
        SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
    NV.Index = NextIndex++;
  }
  SS->symbol()->VersionId = NV.Index;
}

template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
  auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
  auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());

  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
    // Create an Elf_Verneed for this DSO.
    Verneed->vn_version = 1;
    Verneed->vn_cnt = P.first->VerdefMap.size();
    Verneed->vn_file = P.second;
    Verneed->vn_aux =
        reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
    Verneed->vn_next = sizeof(Elf_Verneed);
    ++Verneed;

    // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
    // VerdefMap, which will only contain references to needed version
    // definitions. Each Elf_Vernaux is based on the information contained in
    // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
    // pointers, but is deterministic because the pointers refer to Elf_Verdef
    // data structures within a single input file.
    for (auto &NV : P.first->VerdefMap) {
      Vernaux->vna_hash = NV.first->vd_hash;
      Vernaux->vna_flags = 0;
      Vernaux->vna_other = NV.second.Index;
      Vernaux->vna_name = NV.second.StrTab;
      Vernaux->vna_next = sizeof(Elf_Vernaux);
      ++Vernaux;
    }

    Vernaux[-1].vna_next = 0;
  }
  Verneed[-1].vn_next = 0;
}

template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
  this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
  this->Info = Needed.size();
  unsigned Size = Needed.size() * sizeof(Elf_Verneed);
  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
    Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
  this->Size = Size;
}

template <class ELFT>
static typename ELFT::uint getOutFlags(InputSectionBase<ELFT> *S) {
  return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
}

template <class ELFT>
static SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
                                            StringRef OutsecName) {
  typedef typename ELFT::uint uintX_t;
  uintX_t Flags = getOutFlags(C);

  // For SHF_MERGE we create different output sections for each alignment.
  // This makes each output section simple and keeps a single level mapping from
  // input to output.
  // In case of relocatable object generation we do not try to perform merging
  // and treat SHF_MERGE sections as regular ones, but also create different
  // output sections for them to allow merging at final linking stage.
  uintX_t Alignment = 0;
  if (isa<MergeInputSection<ELFT>>(C) ||
      (Config->Relocatable && (C->Flags & SHF_MERGE)))
    Alignment = std::max<uintX_t>(C->Alignment, C->Entsize);

  return SectionKey<ELFT::Is64Bits>{OutsecName, C->Type, Flags, Alignment};
}

template <class ELFT>
std::pair<OutputSectionBase *, bool>
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
                                   StringRef OutsecName) {
  SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
  return create(Key, C);
}

template <class ELFT>
std::pair<OutputSectionBase *, bool>
OutputSectionFactory<ELFT>::create(const SectionKey<ELFT::Is64Bits> &Key,
                                   InputSectionBase<ELFT> *C) {
  uintX_t Flags = getOutFlags(C);
  OutputSectionBase *&Sec = Map[Key];
  if (Sec) {
    Sec->Flags |= Flags;
    return {Sec, false};
  }

  uint32_t Type = C->Type;
  switch (C->kind()) {
  case InputSectionBase<ELFT>::Regular:
  case InputSectionBase<ELFT>::Synthetic:
    Sec = make<OutputSection<ELFT>>(Key.Name, Type, Flags);
    break;
  case InputSectionBase<ELFT>::EHFrame:
    return {Out<ELFT>::EhFrame, false};
  case InputSectionBase<ELFT>::Merge:
    Sec = make<MergeOutputSection<ELFT>>(Key.Name, Type, Flags, Key.Alignment);
    break;
  }
  return {Sec, true};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
                              0};
}

template <bool Is64Bits>
unsigned
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
  return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
}

template <bool Is64Bits>
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
                                                           const Key &RHS) {
  return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
         LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
         LHS.Alignment == RHS.Alignment;
}

namespace llvm {
template struct DenseMapInfo<SectionKey<true>>;
template struct DenseMapInfo<SectionKey<false>>;
}

namespace lld {
namespace elf {

template void OutputSectionBase::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);

template class EhFrameHeader<ELF32LE>;
template class EhFrameHeader<ELF32BE>;
template class EhFrameHeader<ELF64LE>;
template class EhFrameHeader<ELF64BE>;

template class OutputSection<ELF32LE>;
template class OutputSection<ELF32BE>;
template class OutputSection<ELF64LE>;
template class OutputSection<ELF64BE>;

template class EhOutputSection<ELF32LE>;
template class EhOutputSection<ELF32BE>;
template class EhOutputSection<ELF64LE>;
template class EhOutputSection<ELF64BE>;

template class MergeOutputSection<ELF32LE>;
template class MergeOutputSection<ELF32BE>;
template class MergeOutputSection<ELF64LE>;
template class MergeOutputSection<ELF64BE>;

template class VersionTableSection<ELF32LE>;
template class VersionTableSection<ELF32BE>;
template class VersionTableSection<ELF64LE>;
template class VersionTableSection<ELF64BE>;

template class VersionNeedSection<ELF32LE>;
template class VersionNeedSection<ELF32BE>;
template class VersionNeedSection<ELF64LE>;
template class VersionNeedSection<ELF64BE>;

template class VersionDefinitionSection<ELF32LE>;
template class VersionDefinitionSection<ELF32BE>;
template class VersionDefinitionSection<ELF64LE>;
template class VersionDefinitionSection<ELF64BE>;

template class GdbIndexSection<ELF32LE>;
template class GdbIndexSection<ELF32BE>;
template class GdbIndexSection<ELF64LE>;
template class GdbIndexSection<ELF64BE>;

template class OutputSectionFactory<ELF32LE>;
template class OutputSectionFactory<ELF32BE>;
template class OutputSectionFactory<ELF64LE>;
template class OutputSectionFactory<ELF64BE>;
}
}
OpenPOWER on IntegriCloud