summaryrefslogtreecommitdiffstats
path: root/libcxx/test/std/utilities/tuple/tuple.tuple/tuple.apply/apply.pass.cpp
blob: 4c15499f5c1df9afd5a68de504f37e71281cc5fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// UNSUPPORTED: c++98, c++03, c++11, c++14

// <tuple>

// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)

// Test with different ref/ptr/cv qualified argument types.

#include <tuple>
#include <array>
#include <utility>
#include <cassert>

#include "test_macros.h"
#include "type_id.h"

// std::array is explicitly allowed to be initialized with A a = { init-list };.
// Disable the missing braces warning for this reason.
#include "disable_missing_braces_warning.h"


constexpr int constexpr_sum_fn() { return 0; }

template <class ...Ints>
constexpr int constexpr_sum_fn(int x1, Ints... rest) { return x1 + constexpr_sum_fn(rest...); }

struct ConstexprSumT {
  constexpr ConstexprSumT() = default;
  template <class ...Ints>
  constexpr int operator()(Ints... values) const {
      return constexpr_sum_fn(values...);
  }
};


void test_constexpr_evaluation()
{
    constexpr ConstexprSumT sum_obj{};
    {
        using Tup = std::tuple<>;
        using Fn = int(&)();
        constexpr Tup t;
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 0, "");
        static_assert(std::apply(sum_obj, t) == 0, "");
    }
    {
        using Tup = std::tuple<int>;
        using Fn = int(&)(int);
        constexpr Tup t(42);
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 42, "");
        static_assert(std::apply(sum_obj, t) == 42, "");
    }
    {
        using Tup = std::tuple<int, long>;
        using Fn = int(&)(int, int);
        constexpr Tup t(42, 101);
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 143, "");
        static_assert(std::apply(sum_obj, t) == 143, "");
    }
    {
        using Tup = std::pair<int, long>;
        using Fn = int(&)(int, int);
        constexpr Tup t(42, 101);
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 143, "");
        static_assert(std::apply(sum_obj, t) == 143, "");
    }
    {
        using Tup = std::tuple<int, long, int>;
        using Fn = int(&)(int, int, int);
        constexpr Tup t(42, 101, -1);
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 142, "");
        static_assert(std::apply(sum_obj, t) == 142, "");
    }
    {
        using Tup = std::array<int, 3>;
        using Fn = int(&)(int, int, int);
        constexpr Tup t = {42, 101, -1};
        static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 142, "");
        static_assert(std::apply(sum_obj, t) == 142, "");
    }
}


enum CallQuals {
  CQ_None,
  CQ_LValue,
  CQ_ConstLValue,
  CQ_RValue,
  CQ_ConstRValue
};

template <class Tuple>
struct CallInfo {
  CallQuals quals;
  TypeID const* arg_types;
  Tuple args;

  template <class ...Args>
  CallInfo(CallQuals q, Args&&... xargs)
      : quals(q), arg_types(&makeArgumentID<Args&&...>()), args(std::forward<Args>(xargs)...)
  {}
};

template <class ...Args>
inline CallInfo<decltype(std::forward_as_tuple(std::declval<Args>()...))>
makeCallInfo(CallQuals quals, Args&&... args) {
    return {quals, std::forward<Args>(args)...};
}

struct TrackedCallable {

  TrackedCallable() = default;

  template <class ...Args> auto operator()(Args&&... xargs) &
  { return makeCallInfo(CQ_LValue, std::forward<Args>(xargs)...); }

  template <class ...Args> auto operator()(Args&&... xargs) const&
  { return makeCallInfo(CQ_ConstLValue, std::forward<Args>(xargs)...); }

  template <class ...Args> auto operator()(Args&&... xargs) &&
  { return makeCallInfo(CQ_RValue, std::forward<Args>(xargs)...); }

  template <class ...Args> auto operator()(Args&&... xargs) const&&
  { return makeCallInfo(CQ_ConstRValue, std::forward<Args>(xargs)...); }
};

template <class ...ExpectArgs, class Tuple>
void check_apply_quals_and_types(Tuple&& t) {
    TypeID const* const expect_args = &makeArgumentID<ExpectArgs...>();
    TrackedCallable obj;
    TrackedCallable const& cobj = obj;
    {
        auto ret = std::apply(obj, std::forward<Tuple>(t));
        assert(ret.quals == CQ_LValue);
        assert(ret.arg_types == expect_args);
        assert(ret.args == t);
    }
    {
        auto ret = std::apply(cobj, std::forward<Tuple>(t));
        assert(ret.quals == CQ_ConstLValue);
        assert(ret.arg_types == expect_args);
        assert(ret.args == t);
    }
    {
        auto ret = std::apply(std::move(obj), std::forward<Tuple>(t));
        assert(ret.quals == CQ_RValue);
        assert(ret.arg_types == expect_args);
        assert(ret.args == t);
    }
    {
        auto ret = std::apply(std::move(cobj), std::forward<Tuple>(t));
        assert(ret.quals == CQ_ConstRValue);
        assert(ret.arg_types == expect_args);
        assert(ret.args == t);
    }
}

void test_call_quals_and_arg_types()
{
    using Tup = std::tuple<int, int const&, unsigned&&>;
    const int x = 42;
    unsigned y = 101;
    Tup t(-1, x, std::move(y));
    Tup const& ct = t;
    check_apply_quals_and_types<int&, int const&, unsigned&>(t);
    check_apply_quals_and_types<int const&, int const&, unsigned&>(ct);
    check_apply_quals_and_types<int&&, int const&, unsigned&&>(std::move(t));
    check_apply_quals_and_types<int const&&, int const&, unsigned&&>(std::move(ct));
}


struct NothrowMoveable {
  NothrowMoveable() noexcept = default;
  NothrowMoveable(NothrowMoveable const&) noexcept(false) {}
  NothrowMoveable(NothrowMoveable&&) noexcept {}
};

template <bool IsNoexcept>
struct TestNoexceptCallable {
  template <class ...Args>
  NothrowMoveable operator()(Args...) const noexcept(IsNoexcept) { return {}; }
};

void test_noexcept()
{
    TestNoexceptCallable<true> nec;
    TestNoexceptCallable<false> tc;
    {
        // test that the functions noexcept-ness is propagated
        using Tup = std::tuple<int, const char*, long>;
        Tup t;
        LIBCPP_ASSERT_NOEXCEPT(std::apply(nec, t));
        ASSERT_NOT_NOEXCEPT(std::apply(tc, t));
    }
    {
        // test that the noexcept-ness of the argument conversions is checked.
        using Tup = std::tuple<NothrowMoveable, int>;
        Tup t;
        ASSERT_NOT_NOEXCEPT(std::apply(nec, t));
        LIBCPP_ASSERT_NOEXCEPT(std::apply(nec, std::move(t)));
    }
}

namespace ReturnTypeTest {
    static int my_int = 42;

    template <int N> struct index {};

    void f(index<0>) {}

    int f(index<1>) { return 0; }

    int & f(index<2>) { return static_cast<int &>(my_int); }
    int const & f(index<3>) { return static_cast<int const &>(my_int); }
    int volatile & f(index<4>) { return static_cast<int volatile &>(my_int); }
    int const volatile & f(index<5>) { return static_cast<int const volatile &>(my_int); }

    int && f(index<6>) { return static_cast<int &&>(my_int); }
    int const && f(index<7>) { return static_cast<int const &&>(my_int); }
    int volatile && f(index<8>) { return static_cast<int volatile &&>(my_int); }
    int const volatile && f(index<9>) { return static_cast<int const volatile &&>(my_int); }

    int * f(index<10>) { return static_cast<int *>(&my_int); }
    int const * f(index<11>) { return static_cast<int const *>(&my_int); }
    int volatile * f(index<12>) { return static_cast<int volatile *>(&my_int); }
    int const volatile * f(index<13>) { return static_cast<int const volatile *>(&my_int); }

    template <int Func, class Expect>
    void test()
    {
        using RawInvokeResult = decltype(f(index<Func>{}));
        static_assert(std::is_same<RawInvokeResult, Expect>::value, "");
        using FnType = RawInvokeResult (*) (index<Func>);
        FnType fn = f;
        std::tuple<index<Func>> t; ((void)t);
        using InvokeResult = decltype(std::apply(fn, t));
        static_assert(std::is_same<InvokeResult, Expect>::value, "");
    }
} // end namespace ReturnTypeTest

void test_return_type()
{
    using ReturnTypeTest::test;
    test<0, void>();
    test<1, int>();
    test<2, int &>();
    test<3, int const &>();
    test<4, int volatile &>();
    test<5, int const volatile &>();
    test<6, int &&>();
    test<7, int const &&>();
    test<8, int volatile &&>();
    test<9, int const volatile &&>();
    test<10, int *>();
    test<11, int const *>();
    test<12, int volatile *>();
    test<13, int const volatile *>();
}

int main() {
    test_constexpr_evaluation();
    test_call_quals_and_arg_types();
    test_return_type();
    test_noexcept();
}
OpenPOWER on IntegriCloud