1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <memory>
// unique_ptr
//=============================================================================
// TESTING std::unique_ptr::unique_ptr(pointer)
//
// Concerns:
// 1 The pointer constructor works for any default constructible deleter types.
// 2 The pointer constructor accepts pointers to derived types.
// 2 The stored type 'T' is allowed to be incomplete.
//
// Plan
// 1 Construct unique_ptr<T, D>'s with a pointer to 'T' and various deleter
// types (C-1)
// 2 Construct unique_ptr<T, D>'s with a pointer to 'D' and various deleter
// types where 'D' is derived from 'T'. (C-1,2)
// 3 Construct a unique_ptr<T, D> with a pointer to 'T' and various deleter
// types where 'T' is an incomplete type (C-1,3)
// Test unique_ptr(pointer) ctor
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
// unique_ptr(pointer) ctor should only require default Deleter ctor
template <bool IsArray>
void test_pointer() {
typedef typename std::conditional<!IsArray, A, A[]>::type ValueT;
const int expect_alive = IsArray ? 5 : 1;
#if TEST_STD_VER >= 11
{
using U1 = std::unique_ptr<ValueT>;
using U2 = std::unique_ptr<ValueT, Deleter<ValueT> >;
// Test for noexcept
static_assert(std::is_nothrow_constructible<U1, A*>::value, "");
static_assert(std::is_nothrow_constructible<U2, A*>::value, "");
// Test for explicit
static_assert(!std::is_convertible<A*, U1>::value, "");
static_assert(!std::is_convertible<A*, U2>::value, "");
}
#endif
{
A* p = newValue<ValueT>(expect_alive);
assert(A::count == expect_alive);
std::unique_ptr<ValueT> s(p);
assert(s.get() == p);
}
assert(A::count == 0);
{
A* p = newValue<ValueT>(expect_alive);
assert(A::count == expect_alive);
std::unique_ptr<ValueT, NCDeleter<ValueT> > s(p);
assert(s.get() == p);
assert(s.get_deleter().state() == 0);
}
assert(A::count == 0);
}
void test_derived() {
{
B* p = new B;
assert(A::count == 1);
assert(B::count == 1);
std::unique_ptr<A> s(p);
assert(s.get() == p);
}
assert(A::count == 0);
assert(B::count == 0);
{
B* p = new B;
assert(A::count == 1);
assert(B::count == 1);
std::unique_ptr<A, NCDeleter<A> > s(p);
assert(s.get() == p);
assert(s.get_deleter().state() == 0);
}
assert(A::count == 0);
assert(B::count == 0);
}
#if TEST_STD_VER >= 11
struct NonDefaultDeleter {
NonDefaultDeleter() = delete;
void operator()(void*) const {}
};
struct GenericDeleter {
void operator()(void*) const;
};
#endif
template <class T>
void test_sfinae() {
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resolution when
// the deleter is a pointer type
using U = std::unique_ptr<T, void (*)(void*)>;
static_assert(!std::is_constructible<U, T*>::value, "");
}
{ // the constructor does not participate in overload resolution when
// the deleter is not default constructible
using Del = CDeleter<T>;
using U1 = std::unique_ptr<T, NonDefaultDeleter>;
using U2 = std::unique_ptr<T, Del&>;
using U3 = std::unique_ptr<T, Del const&>;
static_assert(!std::is_constructible<U1, T*>::value, "");
static_assert(!std::is_constructible<U2, T*>::value, "");
static_assert(!std::is_constructible<U3, T*>::value, "");
}
#endif
}
static void test_sfinae_runtime() {
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resolution when
// a base <-> derived conversion would occur.
using UA = std::unique_ptr<A[]>;
using UAD = std::unique_ptr<A[], GenericDeleter>;
using UAC = std::unique_ptr<const A[]>;
using UB = std::unique_ptr<B[]>;
using UBD = std::unique_ptr<B[], GenericDeleter>;
using UBC = std::unique_ptr<const B[]>;
static_assert(!std::is_constructible<UA, B*>::value, "");
static_assert(!std::is_constructible<UB, A*>::value, "");
static_assert(!std::is_constructible<UAD, B*>::value, "");
static_assert(!std::is_constructible<UBD, A*>::value, "");
static_assert(!std::is_constructible<UAC, const B*>::value, "");
static_assert(!std::is_constructible<UBC, const A*>::value, "");
}
#endif
}
DEFINE_AND_RUN_IS_INCOMPLETE_TEST({
{ doIncompleteTypeTest(1, getNewIncomplete()); }
checkNumIncompleteTypeAlive(0);
{
doIncompleteTypeTest<IncompleteType, NCDeleter<IncompleteType> >(
1, getNewIncomplete());
}
checkNumIncompleteTypeAlive(0);
})
int main(int, char**) {
{
test_pointer</*IsArray*/ false>();
test_derived();
test_sfinae<int>();
}
{
test_pointer</*IsArray*/ true>();
test_sfinae<int[]>();
test_sfinae_runtime();
}
return 0;
}
|