summaryrefslogtreecommitdiffstats
path: root/libcxx/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.exp/eval_param.pass.cpp
blob: e51b45e36086bcd4941175599f960dbc30e6b491 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// <random>

// template<class RealType = double>
// class exponential_distribution

// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);

#include <random>
#include <cassert>
#include <vector>
#include <numeric>

template <class T>
inline
T
sqr(T x)
{
    return x * x;
}

int main()
{
    {
        typedef std::exponential_distribution<> D;
        typedef D::param_type P;
        typedef std::knuth_b G;
        G g;
        D d(.75);
        P p(2);
        const int N = 1000;
        std::vector<D::result_type> u;
        for (int i = 0; i < N; ++i)
            u.push_back(d(g, p));
        D::result_type mean = std::accumulate(u.begin(), u.end(),
                                              D::result_type(0)) / u.size();
        D::result_type var = 0;
        for (int i = 0; i < u.size(); ++i)
            var += sqr(u[i] - mean);
        var /= u.size();
        D::result_type x_mean = 1/p.lambda();
        D::result_type x_var = 1/sqr(p.lambda());
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
        assert(std::abs(var - x_var) / x_var < 0.01);
    }
}
OpenPOWER on IntegriCloud