summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/xray/xray_inmemory_log.cc
blob: 74789ebac1c2532e622a4c917733ab9ad3a6c52b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//===-- xray_inmemory_log.cc ------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <cstring>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_inmemory_log.h"
#include "xray_interface_internal.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

__sanitizer::SpinMutex LogMutex;

// We use elements of this type to record the entry TSC of every function ID we
// see as we're tracing a particular thread's execution.
struct StackEntry {
  int32_t FuncId;
  uint64_t TSC;
};

struct alignas(64) ThreadLocalData {
  XRayRecord *InMemoryBuffer = nullptr;
  size_t BufferSize = 0;
  size_t BufferOffset = 0;
  StackEntry *ShadowStack = nullptr;
  size_t StackSize = 0;
  size_t StackEntries = 0;
  int Fd = -1;
};

static pthread_key_t PThreadKey;

static __sanitizer::atomic_uint8_t BasicInitialized{0};

BasicLoggingOptions GlobalOptions;

thread_local volatile bool RecusionGuard = false;

static int openLogFile() XRAY_NEVER_INSTRUMENT {
  int F = getLogFD();
  if (F == -1)
    return -1;

  // Test for required CPU features and cache the cycle frequency
  static bool TSCSupported = probeRequiredCPUFeatures();
  static uint64_t CycleFrequency =
      TSCSupported ? getTSCFrequency() : __xray::NanosecondsPerSecond;

  // Since we're here, we get to write the header. We set it up so that the
  // header will only be written once, at the start, and let the threads
  // logging do writes which just append.
  XRayFileHeader Header;
  Header.Version = 2; // Version 2 includes tail exit records.
  Header.Type = FileTypes::NAIVE_LOG;
  Header.CycleFrequency = CycleFrequency;

  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  retryingWriteAll(F, reinterpret_cast<char *>(&Header),
                   reinterpret_cast<char *>(&Header) + sizeof(Header));
  return F;
}

pid_t getTId() XRAY_NEVER_INSTRUMENT {
  thread_local pid_t TId = syscall(SYS_gettid);
  return TId;
}

int getGlobalFd() XRAY_NEVER_INSTRUMENT {
  static int Fd = openLogFile();
  return Fd;
}

ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
  thread_local ThreadLocalData TLD;
  thread_local bool UNUSED TOnce = [] {
    if (GlobalOptions.ThreadBufferSize == 0)
      return false;
    pthread_setspecific(PThreadKey, &TLD);
    TLD.Fd = getGlobalFd();
    TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
        InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
                      nullptr, alignof(XRayRecord)));
    TLD.BufferSize = GlobalOptions.ThreadBufferSize;
    TLD.BufferOffset = 0;
    if (GlobalOptions.MaxStackDepth == 0)
      return false;
    TLD.ShadowStack = reinterpret_cast<StackEntry *>(
        InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
                      alignof(StackEntry)));
    TLD.StackSize = GlobalOptions.MaxStackDepth;
    TLD.StackEntries = 0;
    return false;
  }();
  return TLD;
}

template <class RDTSC>
void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
                    RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  auto &InMemoryBuffer = TLD.InMemoryBuffer;
  auto &Offset = TLD.BufferOffset;
  int Fd = getGlobalFd();
  if (Fd == -1)
    return;

  // Use a simple recursion guard, to handle cases where we're already logging
  // and for one reason or another, this function gets called again in the same
  // thread.
  if (RecusionGuard)
    return;
  RecusionGuard = true;

  // First we get the useful data, and stuff it into the already aligned buffer
  // through a pointer offset.
  auto &R = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer)[Offset];
  R.RecordType = RecordTypes::NORMAL;
  R.TSC = ReadTSC(R.CPU);
  R.TId = getTId();
  R.Type = Type;
  R.FuncId = FuncId;
  if (++Offset == TLD.BufferSize) {
    __sanitizer::SpinMutexLock L(&LogMutex);
    auto RecordBuffer = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer);
    retryingWriteAll(Fd, reinterpret_cast<char *>(RecordBuffer),
                     reinterpret_cast<char *>(RecordBuffer + Offset));
    Offset = 0;
  }

  RecusionGuard = false;
}

template <class RDTSC>
void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
                           RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  auto &InMemoryBuffer = TLD.InMemoryBuffer;
  auto &Offset = TLD.BufferOffset;
  const auto &BuffLen = TLD.BufferSize;
  int Fd = getGlobalFd();
  if (Fd == -1)
    return;

  // First we check whether there's enough space to write the data consecutively
  // in the thread-local buffer. If not, we first flush the buffer before
  // attempting to write the two records that must be consecutive.
  if (Offset + 2 > BuffLen) {
    __sanitizer::SpinMutexLock L(&LogMutex);
    auto RecordBuffer = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer);
    retryingWriteAll(Fd, reinterpret_cast<char *>(RecordBuffer),
                     reinterpret_cast<char *>(RecordBuffer + Offset));
    Offset = 0;
  }

  // Then we write the "we have an argument" record.
  InMemoryRawLog(FuncId, Type, ReadTSC);

  if (RecusionGuard)
    return;

  RecusionGuard = true;

  // And from here on write the arg payload.
  __xray::XRayArgPayload R;
  R.RecordType = RecordTypes::ARG_PAYLOAD;
  R.FuncId = FuncId;
  R.TId = getTId();
  R.Arg = Arg1;
  auto EntryPtr =
      &reinterpret_cast<__xray::XRayArgPayload *>(&InMemoryBuffer)[Offset];
  std::memcpy(EntryPtr, &R, sizeof(R));
  if (++Offset == BuffLen) {
    __sanitizer::SpinMutexLock L(&LogMutex);
    auto RecordBuffer = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer);
    retryingWriteAll(Fd, reinterpret_cast<char *>(RecordBuffer),
                     reinterpret_cast<char *>(RecordBuffer + Offset));
    Offset = 0;
  }

  RecusionGuard = false;
}

void basicLoggingHandleArg0RealTSC(int32_t FuncId,
                                   XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, __xray::readTSC);
}

void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
    XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
      TS = {0, 0};
    }
    CPU = 0;
    return TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
  });
}

void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
                                   uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(FuncId, Type, Arg1, __xray::readTSC);
}

void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
                                      uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(
      FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
        timespec TS;
        int result = clock_gettime(CLOCK_REALTIME, &TS);
        if (result != 0) {
          Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
          TS = {0, 0};
        }
        CPU = 0;
        return TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
      });
}

XRayLogInitStatus basicLoggingInit(size_t BufferSize, size_t BufferMax,
                                   void *Options,
                                   size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  static bool UNUSED Once = [] {
    pthread_key_create(&PThreadKey, +[](void *P) {
      ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
      if (TLD.Fd == -1 || TLD.BufferOffset == 0)
        return;

      {
        __sanitizer::SpinMutexLock L(&LogMutex);
        retryingWriteAll(
            TLD.Fd, reinterpret_cast<char *>(TLD.InMemoryBuffer),
            reinterpret_cast<char *>(TLD.InMemoryBuffer + TLD.BufferOffset));
      }

      // Because this thread's exit could be the last one trying to write to
      // the file and that we're not able to close out the file properly, we
      // sync instead and hope that the pending writes are flushed as the
      // thread exits.
      fsync(TLD.Fd);

      // Clean up dynamic resources.
      if (TLD.InMemoryBuffer)
        InternalFree(TLD.InMemoryBuffer);
      if (TLD.ShadowStack)
        InternalFree(TLD.ShadowStack);
    });
    return false;
  }();

  uint8_t Expected = 0;
  if (!__sanitizer::atomic_compare_exchange_strong(
          &BasicInitialized, &Expected, 1, __sanitizer::memory_order_acq_rel)) {
    if (__sanitizer::Verbosity())
      Report("Basic logging already initialized.\n");
    return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  }

  if (OptionsSize != sizeof(BasicLoggingOptions)) {
    Report("Invalid options size, potential ABI mismatch; expected %d got %d",
           sizeof(BasicLoggingOptions), OptionsSize);
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  }

  static auto UseRealTSC = probeRequiredCPUFeatures();
  if (!UseRealTSC && __sanitizer::Verbosity())
    Report("WARNING: Required CPU features missing for XRay instrumentation, "
           "using emulation instead.\n");

  GlobalOptions = *reinterpret_cast<BasicLoggingOptions *>(Options);
  __xray_set_handler_arg1(UseRealTSC ? basicLoggingHandleArg1RealTSC
                                     : basicLoggingHandleArg1EmulateTSC);
  __xray_set_handler(UseRealTSC ? basicLoggingHandleArg0RealTSC
                                : basicLoggingHandleArg0EmulateTSC);
  __xray_remove_customevent_handler();
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!__sanitizer::atomic_compare_exchange_strong(
          &BasicInitialized, &Expected, 0, __sanitizer::memory_order_acq_rel) &&
      __sanitizer::Verbosity())
    Report("Basic logging already finalized.\n");

  // Nothing really to do aside from marking state of the global to be
  // uninitialized.

  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
  // This really does nothing, since flushing the logs happen at the end of a
  // thread's lifetime, or when the buffers are full.
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

// This is a handler that, effectively, does nothing.
void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
}

bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      basicLoggingInit,
      basicLoggingFinalize,
      basicLoggingHandleArg0Empty,
      basicLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      __sanitizer::Verbosity())
    Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
           RegistrationResult);
  if (flags()->xray_naive_log ||
      !__sanitizer::internal_strcmp(flags()->xray_mode, "xray-basic")) {
    __xray_set_log_impl(Impl);
    BasicLoggingOptions Options;
    Options.DurationFilterMicros =
        flags()->xray_naive_log_func_duration_threshold_us;
    Options.MaxStackDepth = flags()->xray_naive_log_max_stack_depth;
    Options.ThreadBufferSize = flags()->xray_naive_log_thread_buffer_size;
    __xray_log_init(flags()->xray_naive_log_thread_buffer_size, 0, &Options,
                    sizeof(BasicLoggingOptions));
  }
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::basicLogDynamicInitializer();
OpenPOWER on IntegriCloud