summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/xray/xray_allocator.h
blob: f77bccbd9c732257de2cdb2d650ce39b0f510d10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
//===-- xray_allocator.h ---------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the allocator interface for an arena allocator, used primarily for
// the profiling runtime.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_ALLOCATOR_H
#define XRAY_ALLOCATOR_H

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "xray_defs.h"
#include "xray_utils.h"
#include <cstddef>
#include <cstdint>
#include <sys/mman.h>

namespace __xray {

// We implement our own memory allocation routine which will bypass the
// internal allocator. This allows us to manage the memory directly, using
// mmap'ed memory to back the allocators.
template <class T> T *allocate() XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocate(T *B) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
  internal_munmap(B, RoundedSize);
}

template <class T = uint8_t> T *allocateBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocateBuffer(T *B, size_t S) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
  internal_munmap(B, RoundedSize);
}

template <class T, class... U>
T *initArray(size_t N, U &&... Us) XRAY_NEVER_INSTRUMENT {
  auto A = allocateBuffer<T>(N);
  if (A != nullptr)
    while (N > 0)
      new (A + (--N)) T(std::forward<U>(Us)...);
  return A;
}

/// The Allocator type hands out fixed-sized chunks of memory that are
/// cache-line aligned and sized. This is useful for placement of
/// performance-sensitive data in memory that's frequently accessed. The
/// allocator also self-limits the peak memory usage to a dynamically defined
/// maximum.
///
/// N is the lower-bound size of the block of memory to return from the
/// allocation function. N is used to compute the size of a block, which is
/// cache-line-size multiples worth of memory. We compute the size of a block by
/// determining how many cache lines worth of memory is required to subsume N.
///
/// The Allocator instance will manage its own memory acquired through mmap.
/// This severely constrains the platforms on which this can be used to POSIX
/// systems where mmap semantics are well-defined.
///
/// FIXME: Isolate the lower-level memory management to a different abstraction
/// that can be platform-specific.
template <size_t N> struct Allocator {
  // The Allocator returns memory as Block instances.
  struct Block {
    /// Compute the minimum cache-line size multiple that is >= N.
    static constexpr auto Size = nearest_boundary(N, kCacheLineSize);
    void *Data;
  };

private:
  const size_t MaxMemory{0};
  uint8_t *BackingStore = nullptr;
  uint8_t *AlignedNextBlock = nullptr;
  size_t AllocatedBlocks = 0;
  SpinMutex Mutex{};

  void *Alloc() XRAY_NEVER_INSTRUMENT {
    SpinMutexLock Lock(&Mutex);
    if (UNLIKELY(BackingStore == nullptr)) {
      BackingStore = allocateBuffer(MaxMemory);
      if (BackingStore == nullptr) {
        if (Verbosity())
          Report("XRay Profiling: Failed to allocate memory for allocator.\n");
        return nullptr;
      }

      AlignedNextBlock = BackingStore;

      // Ensure that NextBlock is aligned appropriately.
      auto BackingStoreNum = reinterpret_cast<uintptr_t>(BackingStore);
      auto AlignedNextBlockNum = nearest_boundary(
          reinterpret_cast<uintptr_t>(AlignedNextBlock), kCacheLineSize);
      if (diff(AlignedNextBlockNum, BackingStoreNum) > ptrdiff_t(MaxMemory)) {
        deallocateBuffer(BackingStore, MaxMemory);
        AlignedNextBlock = BackingStore = nullptr;
        if (Verbosity())
          Report("XRay Profiling: Cannot obtain enough memory from "
                 "preallocated region.\n");
        return nullptr;
      }

      AlignedNextBlock = reinterpret_cast<uint8_t *>(AlignedNextBlockNum);

      // Assert that AlignedNextBlock is cache-line aligned.
      DCHECK_EQ(reinterpret_cast<uintptr_t>(AlignedNextBlock) % kCacheLineSize,
                0);
    }

    if ((AllocatedBlocks * Block::Size) >= MaxMemory)
      return nullptr;

    // Align the pointer we'd like to return to an appropriate alignment, then
    // advance the pointer from where to start allocations.
    void *Result = AlignedNextBlock;
    AlignedNextBlock = reinterpret_cast<uint8_t *>(
        reinterpret_cast<uint8_t *>(AlignedNextBlock) + N);
    ++AllocatedBlocks;
    return Result;
  }

public:
  explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
      : MaxMemory(nearest_boundary(M, kCacheLineSize)) {}

  Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }

  ~Allocator() NOEXCEPT XRAY_NEVER_INSTRUMENT {
    if (BackingStore != nullptr) {
      deallocateBuffer(BackingStore, MaxMemory);
    }
  }
};

} // namespace __xray

#endif // XRAY_ALLOCATOR_H
OpenPOWER on IntegriCloud