summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/sanitizer_common/sanitizer_allocator_combined.h
blob: 0d8a2a174bb533f8e7e0a377715dbf042c589fea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

// This class implements a complete memory allocator by using two
// internal allocators:
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
//  When allocating 2^x bytes it should return 2^x aligned chunk.
// PrimaryAllocator is used via a local AllocatorCache.
// SecondaryAllocator can allocate anything, but is not efficient.
template <class PrimaryAllocator, class AllocatorCache,
          class SecondaryAllocator>  // NOLINT
class CombinedAllocator {
 public:
  typedef typename SecondaryAllocator::FailureHandler FailureHandler;

  void InitLinkerInitialized(s32 release_to_os_interval_ms) {
    primary_.Init(release_to_os_interval_ms);
    secondary_.InitLinkerInitialized();
    stats_.InitLinkerInitialized();
  }

  void Init(s32 release_to_os_interval_ms) {
    primary_.Init(release_to_os_interval_ms);
    secondary_.Init();
    stats_.Init();
  }

  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) {
    // Returning 0 on malloc(0) may break a lot of code.
    if (size == 0)
      size = 1;
    if (size + alignment < size)
      return FailureHandler::OnBadRequest();
    uptr original_size = size;
    // If alignment requirements are to be fulfilled by the frontend allocator
    // rather than by the primary or secondary, passing an alignment lower than
    // or equal to 8 will prevent any further rounding up, as well as the later
    // alignment check.
    if (alignment > 8)
      size = RoundUpTo(size, alignment);
    // The primary allocator should return a 2^x aligned allocation when
    // requested 2^x bytes, hence using the rounded up 'size' when being
    // serviced by the primary (this is no longer true when the primary is
    // using a non-fixed base address). The secondary takes care of the
    // alignment without such requirement, and allocating 'size' would use
    // extraneous memory, so we employ 'original_size'.
    void *res;
    if (primary_.CanAllocate(size, alignment))
      res = cache->Allocate(&primary_, primary_.ClassID(size));
    else
      res = secondary_.Allocate(&stats_, original_size, alignment);
    if (!res)
      return FailureHandler::OnOOM();
    if (alignment > 8)
      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
    return res;
  }

  s32 ReleaseToOSIntervalMs() const {
    return primary_.ReleaseToOSIntervalMs();
  }

  void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
    primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms);
  }

  void ForceReleaseToOS() {
    primary_.ForceReleaseToOS();
  }

  void Deallocate(AllocatorCache *cache, void *p) {
    if (!p) return;
    if (primary_.PointerIsMine(p))
      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
    else
      secondary_.Deallocate(&stats_, p);
  }

  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
                   uptr alignment) {
    if (!p)
      return Allocate(cache, new_size, alignment);
    if (!new_size) {
      Deallocate(cache, p);
      return nullptr;
    }
    CHECK(PointerIsMine(p));
    uptr old_size = GetActuallyAllocatedSize(p);
    uptr memcpy_size = Min(new_size, old_size);
    void *new_p = Allocate(cache, new_size, alignment);
    if (new_p)
      internal_memcpy(new_p, p, memcpy_size);
    Deallocate(cache, p);
    return new_p;
  }

  bool PointerIsMine(void *p) {
    if (primary_.PointerIsMine(p))
      return true;
    return secondary_.PointerIsMine(p);
  }

  bool FromPrimary(void *p) {
    return primary_.PointerIsMine(p);
  }

  void *GetMetaData(const void *p) {
    if (primary_.PointerIsMine(p))
      return primary_.GetMetaData(p);
    return secondary_.GetMetaData(p);
  }

  void *GetBlockBegin(const void *p) {
    if (primary_.PointerIsMine(p))
      return primary_.GetBlockBegin(p);
    return secondary_.GetBlockBegin(p);
  }

  // This function does the same as GetBlockBegin, but is much faster.
  // Must be called with the allocator locked.
  void *GetBlockBeginFastLocked(void *p) {
    if (primary_.PointerIsMine(p))
      return primary_.GetBlockBegin(p);
    return secondary_.GetBlockBeginFastLocked(p);
  }

  uptr GetActuallyAllocatedSize(void *p) {
    if (primary_.PointerIsMine(p))
      return primary_.GetActuallyAllocatedSize(p);
    return secondary_.GetActuallyAllocatedSize(p);
  }

  uptr TotalMemoryUsed() {
    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
  }

  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }

  void InitCache(AllocatorCache *cache) {
    cache->Init(&stats_);
  }

  void DestroyCache(AllocatorCache *cache) {
    cache->Destroy(&primary_, &stats_);
  }

  void SwallowCache(AllocatorCache *cache) {
    cache->Drain(&primary_);
  }

  void GetStats(AllocatorStatCounters s) const {
    stats_.Get(s);
  }

  void PrintStats() {
    primary_.PrintStats();
    secondary_.PrintStats();
  }

  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
  // introspection API.
  void ForceLock() {
    primary_.ForceLock();
    secondary_.ForceLock();
  }

  void ForceUnlock() {
    secondary_.ForceUnlock();
    primary_.ForceUnlock();
  }

  // Iterate over all existing chunks.
  // The allocator must be locked when calling this function.
  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    primary_.ForEachChunk(callback, arg);
    secondary_.ForEachChunk(callback, arg);
  }

 private:
  PrimaryAllocator primary_;
  SecondaryAllocator secondary_;
  AllocatorGlobalStats stats_;
};

OpenPOWER on IntegriCloud