summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/divsf3.c
blob: b798cfb03c0d5c36c05e515a4527b64f1db84c5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements single-precision soft-float division
// with the IEEE-754 default rounding (to nearest, ties to even).
//
// For simplicity, this implementation currently flushes denormals to zero.
// It should be a fairly straightforward exercise to implement gradual
// underflow with correct rounding.
//
//===----------------------------------------------------------------------===//

#define SINGLE_PRECISION
#include "fp_lib.h"

fp_t __divsf3(fp_t a, fp_t b) {
    
    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
    const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
    
    rep_t aSignificand = toRep(a) & significandMask;
    rep_t bSignificand = toRep(b) & significandMask;
    int scale = 0;
    
    // Detect if a or b is zero, denormal, infinity, or NaN.
    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
        
        const rep_t aAbs = toRep(a) & absMask;
        const rep_t bAbs = toRep(b) & absMask;
        
        // NaN / anything = qNaN
        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
        // anything / NaN = qNaN
        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
        
        if (aAbs == infRep) {
            // infinity / infinity = NaN
            if (bAbs == infRep) return fromRep(qnanRep);
            // infinity / anything else = +/- infinity
            else return fromRep(aAbs | quotientSign);
        }
        
        // anything else / infinity = +/- 0
        if (bAbs == infRep) return fromRep(quotientSign);
        
        if (!aAbs) {
            // zero / zero = NaN
            if (!bAbs) return fromRep(qnanRep);
            // zero / anything else = +/- zero
            else return fromRep(quotientSign);
        }
        // anything else / zero = +/- infinity
        if (!bAbs) return fromRep(infRep | quotientSign);
        
        // one or both of a or b is denormal, the other (if applicable) is a
        // normal number.  Renormalize one or both of a and b, and set scale to
        // include the necessary exponent adjustment.
        if (aAbs < implicitBit) scale += normalize(&aSignificand);
        if (bAbs < implicitBit) scale -= normalize(&bSignificand);
    }
    
    // Or in the implicit significand bit.  (If we fell through from the
    // denormal path it was already set by normalize( ), but setting it twice
    // won't hurt anything.)
    aSignificand |= implicitBit;
    bSignificand |= implicitBit;
    int quotientExponent = aExponent - bExponent + scale;
    
    // Align the significand of b as a Q31 fixed-point number in the range
    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
    // is accurate to about 3.5 binary digits.
    uint32_t q31b = bSignificand << 8;
    uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
    
    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
    //
    //     x1 = x0 * (2 - x0 * b)
    //
    // This doubles the number of correct binary digits in the approximation
    // with each iteration, so after three iterations, we have about 28 binary
    // digits of accuracy.
    uint32_t correction;
    correction = -((uint64_t)reciprocal * q31b >> 32);
    reciprocal = (uint64_t)reciprocal * correction >> 31;
    correction = -((uint64_t)reciprocal * q31b >> 32);
    reciprocal = (uint64_t)reciprocal * correction >> 31;
    correction = -((uint64_t)reciprocal * q31b >> 32);
    reciprocal = (uint64_t)reciprocal * correction >> 31;
    
    // Exhaustive testing shows that the error in reciprocal after three steps
    // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
    // expectations.  We bump the reciprocal by a tiny value to force the error
    // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
    // be specific).  This also causes 1/1 to give a sensible approximation
    // instead of zero (due to overflow).
    reciprocal -= 2;
    
    // The numerical reciprocal is accurate to within 2^-28, lies in the
    // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
    // than the true reciprocal of b.  Multiplying a by this reciprocal thus
    // gives a numerical q = a/b in Q24 with the following properties:
    //
    //    1. q < a/b
    //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
    //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
    //       from the fact that we truncate the product, and the 2^27 term
    //       is the error in the reciprocal of b scaled by the maximum
    //       possible value of a.  As a consequence of this error bound,
    //       either q or nextafter(q) is the correctly rounded 
    rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
    
    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    // In either case, we are going to compute a residual of the form
    //
    //     r = a - q*b
    //
    // We know from the construction of q that r satisfies:
    //
    //     0 <= r < ulp(q)*b
    // 
    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    // already have the correct result.  The exact halfway case cannot occur.
    // We also take this time to right shift quotient if it falls in the [1,2)
    // range and adjust the exponent accordingly.
    rep_t residual;
    if (quotient < (implicitBit << 1)) {
        residual = (aSignificand << 24) - quotient * bSignificand;
        quotientExponent--;
    } else {
        quotient >>= 1;
        residual = (aSignificand << 23) - quotient * bSignificand;
    }

    const int writtenExponent = quotientExponent + exponentBias;
    
    if (writtenExponent >= maxExponent) {
        // If we have overflowed the exponent, return infinity.
        return fromRep(infRep | quotientSign);
    }
    
    else if (writtenExponent < 1) {
        // Flush denormals to zero.  In the future, it would be nice to add
        // code to round them correctly.
        return fromRep(quotientSign);
    }
    
    else {
        const bool round = (residual << 1) > bSignificand;
        // Clear the implicit bit
        rep_t absResult = quotient & significandMask;
        // Insert the exponent
        absResult |= (rep_t)writtenExponent << significandBits;
        // Round
        absResult += round;
        // Insert the sign and return
        return fromRep(absResult | quotientSign);
    }
}
OpenPOWER on IntegriCloud