summaryrefslogtreecommitdiffstats
path: root/clang/lib/Sema/SemaOverload.cpp
blob: 11b9e665767312c177b92eab1abac65aa368b4bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ overloading.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "SemaInherit.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>

namespace clang {

/// GetConversionCategory - Retrieve the implicit conversion
/// category corresponding to the given implicit conversion kind.
ImplicitConversionCategory 
GetConversionCategory(ImplicitConversionKind Kind) {
  static const ImplicitConversionCategory
    Category[(int)ICK_Num_Conversion_Kinds] = {
    ICC_Identity,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Qualification_Adjustment,
    ICC_Promotion,
    ICC_Promotion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion
  };
  return Category[(int)Kind];
}

/// GetConversionRank - Retrieve the implicit conversion rank
/// corresponding to the given implicit conversion kind.
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
  static const ImplicitConversionRank
    Rank[(int)ICK_Num_Conversion_Kinds] = {
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion
  };
  return Rank[(int)Kind];
}

/// GetImplicitConversionName - Return the name of this kind of
/// implicit conversion.
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
    "No conversion",
    "Lvalue-to-rvalue",
    "Array-to-pointer",
    "Function-to-pointer",
    "Qualification",
    "Integral promotion",
    "Floating point promotion",
    "Integral conversion",
    "Floating conversion",
    "Floating-integral conversion",
    "Pointer conversion",
    "Pointer-to-member conversion",
    "Boolean conversion"
  };
  return Name[Kind];
}

/// getRank - Retrieve the rank of this standard conversion sequence
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
/// implicit conversions.
ImplicitConversionRank StandardConversionSequence::getRank() const {
  ImplicitConversionRank Rank = ICR_Exact_Match;
  if  (GetConversionRank(First) > Rank)
    Rank = GetConversionRank(First);
  if  (GetConversionRank(Second) > Rank)
    Rank = GetConversionRank(Second);
  if  (GetConversionRank(Third) > Rank)
    Rank = GetConversionRank(Third);
  return Rank;
}

/// isPointerConversionToBool - Determines whether this conversion is
/// a conversion of a pointer or pointer-to-member to bool. This is
/// used as part of the ranking of standard conversion sequences 
/// (C++ 13.3.3.2p4).
bool StandardConversionSequence::isPointerConversionToBool() const
{
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer or function-to-pointer implicit conversions, so
  // check for their presence as well as checking whether FromType is
  // a pointer.
  if (ToType->isBooleanType() &&
      (FromType->isPointerType() ||
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    return true;

  return false;
}

/// isPointerConversionToVoidPointer - Determines whether this
/// conversion is a conversion of a pointer to a void pointer. This is
/// used as part of the ranking of standard conversion sequences (C++
/// 13.3.3.2p4).
bool 
StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext& Context) const
{
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer implicit conversion, so check for its presence
  // and redo the conversion to get a pointer.
  if (First == ICK_Array_To_Pointer)
    FromType = Context.getArrayDecayedType(FromType);

  if (Second == ICK_Pointer_Conversion)
    if (const PointerType* ToPtrType = ToType->getAsPointerType())
      return ToPtrType->getPointeeType()->isVoidType();

  return false;
}

/// DebugPrint - Print this standard conversion sequence to standard
/// error. Useful for debugging overloading issues.
void StandardConversionSequence::DebugPrint() const {
  bool PrintedSomething = false;
  if (First != ICK_Identity) {
    fprintf(stderr, "%s", GetImplicitConversionName(First));
    PrintedSomething = true;
  }

  if (Second != ICK_Identity) {
    if (PrintedSomething) {
      fprintf(stderr, " -> ");
    }
    fprintf(stderr, "%s", GetImplicitConversionName(Second));
    PrintedSomething = true;
  }

  if (Third != ICK_Identity) {
    if (PrintedSomething) {
      fprintf(stderr, " -> ");
    }
    fprintf(stderr, "%s", GetImplicitConversionName(Third));
    PrintedSomething = true;
  }

  if (!PrintedSomething) {
    fprintf(stderr, "No conversions required");
  }
}

/// DebugPrint - Print this user-defined conversion sequence to standard
/// error. Useful for debugging overloading issues.
void UserDefinedConversionSequence::DebugPrint() const {
  if (Before.First || Before.Second || Before.Third) {
    Before.DebugPrint();
    fprintf(stderr, " -> ");
  }
  fprintf(stderr, "'%s'", ConversionFunction->getName());
  if (After.First || After.Second || After.Third) {
    fprintf(stderr, " -> ");
    After.DebugPrint();
  }
}

/// DebugPrint - Print this implicit conversion sequence to standard
/// error. Useful for debugging overloading issues.
void ImplicitConversionSequence::DebugPrint() const {
  switch (ConversionKind) {
  case StandardConversion:
    fprintf(stderr, "Standard conversion: ");
    Standard.DebugPrint();
    break;
  case UserDefinedConversion:
    fprintf(stderr, "User-defined conversion: ");
    UserDefined.DebugPrint();
    break;
  case EllipsisConversion:
    fprintf(stderr, "Ellipsis conversion");
    break;
  case BadConversion:
    fprintf(stderr, "Bad conversion");
    break;
  }

  fprintf(stderr, "\n");
}

// IsOverload - Determine whether the given New declaration is an
// overload of the Old declaration. This routine returns false if New
// and Old cannot be overloaded, e.g., if they are functions with the
// same signature (C++ 1.3.10) or if the Old declaration isn't a
// function (or overload set). When it does return false and Old is an
// OverloadedFunctionDecl, MatchedDecl will be set to point to the
// FunctionDecl that New cannot be overloaded with. 
//
// Example: Given the following input:
//
//   void f(int, float); // #1
//   void f(int, int); // #2
//   int f(int, int); // #3
//
// When we process #1, there is no previous declaration of "f",
// so IsOverload will not be used. 
//
// When we process #2, Old is a FunctionDecl for #1.  By comparing the
// parameter types, we see that #1 and #2 are overloaded (since they
// have different signatures), so this routine returns false;
// MatchedDecl is unchanged.
//
// When we process #3, Old is an OverloadedFunctionDecl containing #1
// and #2. We compare the signatures of #3 to #1 (they're overloaded,
// so we do nothing) and then #3 to #2. Since the signatures of #3 and
// #2 are identical (return types of functions are not part of the
// signature), IsOverload returns false and MatchedDecl will be set to
// point to the FunctionDecl for #2.
bool
Sema::IsOverload(FunctionDecl *New, Decl* OldD, 
                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
{
  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
    // Is this new function an overload of every function in the
    // overload set?
    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
                                           FuncEnd = Ovl->function_end();
    for (; Func != FuncEnd; ++Func) {
      if (!IsOverload(New, *Func, MatchedDecl)) {
        MatchedDecl = Func;
        return false;
      }
    }

    // This function overloads every function in the overload set.
    return true;
  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
    // Is the function New an overload of the function Old?
    QualType OldQType = Context.getCanonicalType(Old->getType());
    QualType NewQType = Context.getCanonicalType(New->getType());

    // Compare the signatures (C++ 1.3.10) of the two functions to
    // determine whether they are overloads. If we find any mismatch
    // in the signature, they are overloads.

    // If either of these functions is a K&R-style function (no
    // prototype), then we consider them to have matching signatures.
    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
      return false;

    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());

    // The signature of a function includes the types of its
    // parameters (C++ 1.3.10), which includes the presence or absence
    // of the ellipsis; see C++ DR 357).
    if (OldQType != NewQType &&
        (OldType->getNumArgs() != NewType->getNumArgs() ||
         OldType->isVariadic() != NewType->isVariadic() ||
         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
                     NewType->arg_type_begin())))
      return true;

    // If the function is a class member, its signature includes the
    // cv-qualifiers (if any) on the function itself.
    //
    // As part of this, also check whether one of the member functions
    // is static, in which case they are not overloads (C++
    // 13.1p2). While not part of the definition of the signature,
    // this check is important to determine whether these functions
    // can be overloaded.
    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
    if (OldMethod && NewMethod && 
        !OldMethod->isStatic() && !NewMethod->isStatic() &&
        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
      return true;

    // The signatures match; this is not an overload.
    return false;
  } else {
    // (C++ 13p1):
    //   Only function declarations can be overloaded; object and type
    //   declarations cannot be overloaded.
    return false;
  }
}

/// TryCopyInitialization - Attempt to copy-initialize a value of the
/// given type (ToType) from the given expression (Expr), as one would
/// do when copy-initializing a function parameter. This function
/// returns an implicit conversion sequence that can be used to
/// perform the initialization. Given
///
///   void f(float f);
///   void g(int i) { f(i); }
///
/// this routine would produce an implicit conversion sequence to
/// describe the initialization of f from i, which will be a standard
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
//
/// Note that this routine only determines how the conversion can be
/// performed; it does not actually perform the conversion. As such,
/// it will not produce any diagnostics if no conversion is available,
/// but will instead return an implicit conversion sequence of kind
/// "BadConversion".
ImplicitConversionSequence
Sema::TryCopyInitialization(Expr* From, QualType ToType)
{
  ImplicitConversionSequence ICS;

  QualType FromType = From->getType();

  // Standard conversions (C++ 4)
  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
  ICS.Standard.Deprecated = false;
  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();

  if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType()) {
    // FIXME: This is a hack to deal with the initialization of
    // references the way that the C-centric code elsewhere deals with
    // references, by only allowing them if the referred-to type is
    // exactly the same. This means that we're only handling the
    // direct-binding case. The code will be replaced by an
    // implementation of C++ 13.3.3.1.4 once we have the
    // initialization of references implemented.
    QualType ToPointee = Context.getCanonicalType(ToTypeRef->getPointeeType());

    // Get down to the canonical type that we're converting from.
    if (const ReferenceType *FromTypeRef = FromType->getAsReferenceType())
      FromType = FromTypeRef->getPointeeType();
    FromType = Context.getCanonicalType(FromType);

    ICS.Standard.First = ICK_Identity;
    ICS.Standard.Second = ICK_Identity;
    ICS.Standard.Third = ICK_Identity;
    ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();

    if (FromType != ToPointee)
      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;

    return ICS;
  }

  // The first conversion can be an lvalue-to-rvalue conversion,
  // array-to-pointer conversion, or function-to-pointer conversion
  // (C++ 4p1).

  // Lvalue-to-rvalue conversion (C++ 4.1): 
  //   An lvalue (3.10) of a non-function, non-array type T can be
  //   converted to an rvalue.
  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
  if (argIsLvalue == Expr::LV_Valid && 
      !FromType->isFunctionType() && !FromType->isArrayType()) {
    ICS.Standard.First = ICK_Lvalue_To_Rvalue;

    // If T is a non-class type, the type of the rvalue is the
    // cv-unqualified version of T. Otherwise, the type of the rvalue
    // is T (C++ 4.1p1).
    if (!FromType->isRecordType())
      FromType = FromType.getUnqualifiedType();
  }
  // Array-to-pointer conversion (C++ 4.2)
  else if (FromType->isArrayType()) {
    ICS.Standard.First = ICK_Array_To_Pointer;

    // An lvalue or rvalue of type "array of N T" or "array of unknown
    // bound of T" can be converted to an rvalue of type "pointer to
    // T" (C++ 4.2p1).
    FromType = Context.getArrayDecayedType(FromType);

    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
      // This conversion is deprecated. (C++ D.4).
      ICS.Standard.Deprecated = true;

      // For the purpose of ranking in overload resolution
      // (13.3.3.1.1), this conversion is considered an
      // array-to-pointer conversion followed by a qualification
      // conversion (4.4). (C++ 4.2p2)
      ICS.Standard.Second = ICK_Identity;
      ICS.Standard.Third = ICK_Qualification;
      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
      return ICS;
    }
  }
  // Function-to-pointer conversion (C++ 4.3).
  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
    ICS.Standard.First = ICK_Function_To_Pointer;

    // An lvalue of function type T can be converted to an rvalue of
    // type "pointer to T." The result is a pointer to the
    // function. (C++ 4.3p1).
    FromType = Context.getPointerType(FromType);

    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
  } 
  // We don't require any conversions for the first step.
  else {
    ICS.Standard.First = ICK_Identity;
  }

  // The second conversion can be an integral promotion, floating
  // point promotion, integral conversion, floating point conversion,
  // floating-integral conversion, pointer conversion,
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
      Context.getCanonicalType(ToType).getUnqualifiedType()) {
    // The unqualified versions of the types are the same: there's no
    // conversion to do.
    ICS.Standard.Second = ICK_Identity;
  }
  // Integral promotion (C++ 4.5).  
  else if (IsIntegralPromotion(From, FromType, ToType)) {
    ICS.Standard.Second = ICK_Integral_Promotion;
    FromType = ToType.getUnqualifiedType();
  } 
  // Floating point promotion (C++ 4.6).
  else if (IsFloatingPointPromotion(FromType, ToType)) {
    ICS.Standard.Second = ICK_Floating_Promotion;
    FromType = ToType.getUnqualifiedType();
  } 
  // Integral conversions (C++ 4.7).
  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
           (ToType->isIntegralType() || ToType->isEnumeralType())) {
    ICS.Standard.Second = ICK_Integral_Conversion;
    FromType = ToType.getUnqualifiedType();
  }
  // Floating point conversions (C++ 4.8).
  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
    ICS.Standard.Second = ICK_Floating_Conversion;
    FromType = ToType.getUnqualifiedType();
  }
  // Floating-integral conversions (C++ 4.9).
  else if ((FromType->isFloatingType() &&
            ToType->isIntegralType() && !ToType->isBooleanType()) ||
           ((FromType->isIntegralType() || FromType->isEnumeralType()) && 
            ToType->isFloatingType())) {
    ICS.Standard.Second = ICK_Floating_Integral;
    FromType = ToType.getUnqualifiedType();
  }
  // Pointer conversions (C++ 4.10).
  else if (IsPointerConversion(From, FromType, ToType, FromType))
    ICS.Standard.Second = ICK_Pointer_Conversion;
  // FIXME: Pointer to member conversions (4.11).
  // Boolean conversions (C++ 4.12).
  // FIXME: pointer-to-member type
  else if (ToType->isBooleanType() &&
           (FromType->isArithmeticType() ||
            FromType->isEnumeralType() ||
            FromType->isPointerType())) {
    ICS.Standard.Second = ICK_Boolean_Conversion;
    FromType = Context.BoolTy;
  } else {
    // No second conversion required.
    ICS.Standard.Second = ICK_Identity;
  }

  // The third conversion can be a qualification conversion (C++ 4p1).
  if (IsQualificationConversion(FromType, ToType)) {
    ICS.Standard.Third = ICK_Qualification;
    FromType = ToType;
  } else {
    // No conversion required
    ICS.Standard.Third = ICK_Identity;
  }

  // If we have not converted the argument type to the parameter type,
  // this is a bad conversion sequence.
  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType))
    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;

  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
  return ICS;
}

/// IsIntegralPromotion - Determines whether the conversion from the
/// expression From (whose potentially-adjusted type is FromType) to
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
{
  const BuiltinType *To = ToType->getAsBuiltinType();

  // An rvalue of type char, signed char, unsigned char, short int, or
  // unsigned short int can be converted to an rvalue of type int if
  // int can represent all the values of the source type; otherwise,
  // the source rvalue can be converted to an rvalue of type unsigned
  // int (C++ 4.5p1).
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
    if (// We can promote any signed, promotable integer type to an int
        (FromType->isSignedIntegerType() ||
         // We can promote any unsigned integer type whose size is
         // less than int to an int.
         (!FromType->isSignedIntegerType() && 
          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
      return To->getKind() == BuiltinType::Int;
        
    return To->getKind() == BuiltinType::UInt;
  }

  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
  // can be converted to an rvalue of the first of the following types
  // that can represent all the values of its underlying type: int,
  // unsigned int, long, or unsigned long (C++ 4.5p2).
  if ((FromType->isEnumeralType() || FromType->isWideCharType())
      && ToType->isIntegerType()) {
    // Determine whether the type we're converting from is signed or
    // unsigned.
    bool FromIsSigned;
    uint64_t FromSize = Context.getTypeSize(FromType);
    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
      FromIsSigned = UnderlyingType->isSignedIntegerType();
    } else {
      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
      FromIsSigned = true;
    }

    // The types we'll try to promote to, in the appropriate
    // order. Try each of these types.
    QualType PromoteTypes[4] = { 
      Context.IntTy, Context.UnsignedIntTy, 
      Context.LongTy, Context.UnsignedLongTy 
    };
    for (int Idx = 0; Idx < 0; ++Idx) {
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
      if (FromSize < ToSize ||
          (FromSize == ToSize && 
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
        // We found the type that we can promote to. If this is the
        // type we wanted, we have a promotion. Otherwise, no
        // promotion.
        return Context.getCanonicalType(FromType).getUnqualifiedType()
          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
      }
    }
  }

  // An rvalue for an integral bit-field (9.6) can be converted to an
  // rvalue of type int if int can represent all the values of the
  // bit-field; otherwise, it can be converted to unsigned int if
  // unsigned int can represent all the values of the bit-field. If
  // the bit-field is larger yet, no integral promotion applies to
  // it. If the bit-field has an enumerated type, it is treated as any
  // other value of that type for promotion purposes (C++ 4.5p3).
  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
    using llvm::APSInt;
    FieldDecl *MemberDecl = MemRef->getMemberDecl();
    APSInt BitWidth;
    if (MemberDecl->isBitField() &&
        FromType->isIntegralType() && !FromType->isEnumeralType() &&
        From->isIntegerConstantExpr(BitWidth, Context)) {
      APSInt ToSize(Context.getTypeSize(ToType));

      // Are we promoting to an int from a bitfield that fits in an int?
      if (BitWidth < ToSize ||
          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
        return To->getKind() == BuiltinType::Int;
        
      // Are we promoting to an unsigned int from an unsigned bitfield
      // that fits into an unsigned int?
      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
        return To->getKind() == BuiltinType::UInt;

      return false;
    }
  }

  // An rvalue of type bool can be converted to an rvalue of type int,
  // with false becoming zero and true becoming one (C++ 4.5p4).
  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
    return true;

  return false;
}

/// IsFloatingPointPromotion - Determines whether the conversion from
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
/// returns true and sets PromotedType to the promoted type.
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
{
  /// An rvalue of type float can be converted to an rvalue of type
  /// double. (C++ 4.6p1).
  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
      if (FromBuiltin->getKind() == BuiltinType::Float &&
          ToBuiltin->getKind() == BuiltinType::Double)
        return true;

  return false;
}

/// IsPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType,
/// can be converted to the type ToType via a pointer conversion (C++
/// 4.10). If so, returns true and places the converted type (that
/// might differ from ToType in its cv-qualifiers at some level) into
/// ConvertedType.
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
                               QualType& ConvertedType)
{
  const PointerType* ToTypePtr = ToType->getAsPointerType();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
  if (From->isNullPointerConstant(Context)) {
    ConvertedType = ToType;
    return true;
  }
  
  // An rvalue of type "pointer to cv T," where T is an object type,
  // can be converted to an rvalue of type "pointer to cv void" (C++
  // 4.10p2).
  if (FromType->isPointerType() &&
      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
      ToTypePtr->getPointeeType()->isVoidType()) {
    // We need to produce a pointer to cv void, where cv is the same
    // set of cv-qualifiers as we had on the incoming pointee type.
    QualType toPointee = ToTypePtr->getPointeeType();
    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
                   ->getPointeeType().getCVRQualifiers();

    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
	  == Quals) {
      // ToType is exactly the type we want. Use it.
      ConvertedType = ToType;
    } else {
      // Build a new type with the right qualifiers.
      ConvertedType 
	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
    }
    return true;
  }

  // C++ [conv.ptr]p3:
  // 
  //   An rvalue of type "pointer to cv D," where D is a class type,
  //   can be converted to an rvalue of type "pointer to cv B," where
  //   B is a base class (clause 10) of D. If B is an inaccessible
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
  //   necessitates this conversion is ill-formed. The result of the
  //   conversion is a pointer to the base class sub-object of the
  //   derived class object. The null pointer value is converted to
  //   the null pointer value of the destination type.
  //
  // Note that we do not check for ambiguity or inaccessibility
  // here. That is handled by CheckPointerConversion.
  if (const PointerType *FromPtrType = FromType->getAsPointerType())
    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
      if (FromPtrType->getPointeeType()->isRecordType() &&
          ToPtrType->getPointeeType()->isRecordType() &&
          IsDerivedFrom(FromPtrType->getPointeeType(), 
                        ToPtrType->getPointeeType())) {
        // The conversion is okay. Now, we need to produce the type
        // that results from this conversion, which will have the same
        // qualifiers as the incoming type.
        QualType CanonFromPointee 
          = Context.getCanonicalType(FromPtrType->getPointeeType());
        QualType ToPointee = ToPtrType->getPointeeType();
        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
        unsigned Quals = CanonFromPointee.getCVRQualifiers();

        if (CanonToPointee.getCVRQualifiers() == Quals) {
          // ToType is exactly the type we want. Use it.
          ConvertedType = ToType;
        } else {
          // Build a new type with the right qualifiers.
          ConvertedType
            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
        }
        return true;
      }
    }

  return false;
}

/// CheckPointerConversion - Check the pointer conversion from the
/// expression From to the type ToType. This routine checks for
/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
/// conversions for which IsPointerConversion has already returned
/// true. It returns true and produces a diagnostic if there was an
/// error, or returns false otherwise.
bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
  QualType FromType = From->getType();

  if (const PointerType *FromPtrType = FromType->getAsPointerType())
    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false);
      QualType FromPointeeType = FromPtrType->getPointeeType(),
               ToPointeeType   = ToPtrType->getPointeeType();
      if (FromPointeeType->isRecordType() &&
          ToPointeeType->isRecordType()) {
        // We must have a derived-to-base conversion. Check an
        // ambiguous or inaccessible conversion.
        return CheckDerivedToBaseConversion(From->getExprLoc(),
                                            From->getSourceRange(),
                                            FromPointeeType, ToPointeeType);
      }
    }

  return false;
}

/// IsQualificationConversion - Determines whether the conversion from
/// an rvalue of type FromType to ToType is a qualification conversion
/// (C++ 4.4).
bool 
Sema::IsQualificationConversion(QualType FromType, QualType ToType)
{
  FromType = Context.getCanonicalType(FromType);
  ToType = Context.getCanonicalType(ToType);

  // If FromType and ToType are the same type, this is not a
  // qualification conversion.
  if (FromType == ToType)
    return false;
    
  // (C++ 4.4p4):
  //   A conversion can add cv-qualifiers at levels other than the first
  //   in multi-level pointers, subject to the following rules: [...]
  bool PreviousToQualsIncludeConst = true;
  bool UnwrappedAnyPointer = false;
  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left to
    // unwrap.
    UnwrappedAnyPointer = true;

    //   -- for every j > 0, if const is in cv 1,j then const is in cv
    //      2,j, and similarly for volatile.
    if (!ToType.isAtLeastAsQualifiedAs(FromType))
      return false;
    
    //   -- if the cv 1,j and cv 2,j are different, then const is in
    //      every cv for 0 < k < j.
    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
        && !PreviousToQualsIncludeConst)
      return false;
    
    // Keep track of whether all prior cv-qualifiers in the "to" type
    // include const.
    PreviousToQualsIncludeConst 
      = PreviousToQualsIncludeConst && ToType.isConstQualified();
  }

  // We are left with FromType and ToType being the pointee types
  // after unwrapping the original FromType and ToType the same number
  // of types. If we unwrapped any pointers, and if FromType and
  // ToType have the same unqualified type (since we checked
  // qualifiers above), then this is a qualification conversion.
  return UnwrappedAnyPointer &&
    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
}

/// CompareImplicitConversionSequences - Compare two implicit
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2).
ImplicitConversionSequence::CompareKind 
Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
                                         const ImplicitConversionSequence& ICS2)
{
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
  // conversion sequences (as defined in 13.3.3.1)
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
  //      conversion sequence than a user-defined conversion sequence or
  //      an ellipsis conversion sequence, and
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
  //      conversion sequence than an ellipsis conversion sequence
  //      (13.3.3.1.3).
  // 
  if (ICS1.ConversionKind < ICS2.ConversionKind)
    return ImplicitConversionSequence::Better;
  else if (ICS2.ConversionKind < ICS1.ConversionKind)
    return ImplicitConversionSequence::Worse;

  // Two implicit conversion sequences of the same form are
  // indistinguishable conversion sequences unless one of the
  // following rules apply: (C++ 13.3.3.2p3):
  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
  else if (ICS1.ConversionKind == 
             ImplicitConversionSequence::UserDefinedConversion) {
    // User-defined conversion sequence U1 is a better conversion
    // sequence than another user-defined conversion sequence U2 if
    // they contain the same user-defined conversion function or
    // constructor and if the second standard conversion sequence of
    // U1 is better than the second standard conversion sequence of
    // U2 (C++ 13.3.3.2p3).
    if (ICS1.UserDefined.ConversionFunction == 
          ICS2.UserDefined.ConversionFunction)
      return CompareStandardConversionSequences(ICS1.UserDefined.After,
                                                ICS2.UserDefined.After);
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareStandardConversionSequences - Compare two standard
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
ImplicitConversionSequence::CompareKind 
Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
                                         const StandardConversionSequence& SCS2)
{
  // Standard conversion sequence S1 is a better conversion sequence
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):

  //  -- S1 is a proper subsequence of S2 (comparing the conversion
  //     sequences in the canonical form defined by 13.3.3.1.1,
  //     excluding any Lvalue Transformation; the identity conversion
  //     sequence is considered to be a subsequence of any
  //     non-identity conversion sequence) or, if not that,
  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
    // Neither is a proper subsequence of the other. Do nothing.
    ;
  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
           (SCS1.Second == ICK_Identity && 
            SCS1.Third == ICK_Identity))
    // SCS1 is a proper subsequence of SCS2.
    return ImplicitConversionSequence::Better;
  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
           (SCS2.Second == ICK_Identity && 
            SCS2.Third == ICK_Identity))
    // SCS2 is a proper subsequence of SCS1.
    return ImplicitConversionSequence::Worse;

  //  -- the rank of S1 is better than the rank of S2 (by the rules
  //     defined below), or, if not that,
  ImplicitConversionRank Rank1 = SCS1.getRank();
  ImplicitConversionRank Rank2 = SCS2.getRank();
  if (Rank1 < Rank2)
    return ImplicitConversionSequence::Better;
  else if (Rank2 < Rank1)
    return ImplicitConversionSequence::Worse;

  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
  // are indistinguishable unless one of the following rules
  // applies:
  
  //   A conversion that is not a conversion of a pointer, or
  //   pointer to member, to bool is better than another conversion
  //   that is such a conversion.
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
    return SCS2.isPointerConversionToBool()
             ? ImplicitConversionSequence::Better
             : ImplicitConversionSequence::Worse;

  // C++ [over.ics.rank]p4b2:
  //
  //   If class B is derived directly or indirectly from class A,
  //   conversion of B* to A* is better than conversion of B* to void*,
  //   and (FIXME) conversion of A* to void* is better than conversion of B*
  //   to void*.
  bool SCS1ConvertsToVoid 
    = SCS1.isPointerConversionToVoidPointer(Context);
  bool SCS2ConvertsToVoid 
    = SCS2.isPointerConversionToVoidPointer(Context);
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid)
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
                              : ImplicitConversionSequence::Worse;

  if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid)
    if (ImplicitConversionSequence::CompareKind DerivedCK
          = CompareDerivedToBaseConversions(SCS1, SCS2))
      return DerivedCK;

  // Compare based on qualification conversions (C++ 13.3.3.2p3,
  // bullet 3).
  if (ImplicitConversionSequence::CompareKind QualCK 
        = CompareQualificationConversions(SCS1, SCS2))
    return QualCK;

  // FIXME: Handle comparison of reference bindings.

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareQualificationConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 
ImplicitConversionSequence::CompareKind 
Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2)
{
  // C++ 13.3.3.2p3:
  //  -- S1 and S2 differ only in their qualification conversion and
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
  //     cv-qualification signature of type T1 is a proper subset of
  //     the cv-qualification signature of type T2, and S1 is not the
  //     deprecated string literal array-to-pointer conversion (4.2).
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
    return ImplicitConversionSequence::Indistinguishable;

  // FIXME: the example in the standard doesn't use a qualification
  // conversion (!)
  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
  T1 = Context.getCanonicalType(T1);
  T2 = Context.getCanonicalType(T2);

  // If the types are the same, we won't learn anything by unwrapped
  // them.
  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
    return ImplicitConversionSequence::Indistinguishable;

  ImplicitConversionSequence::CompareKind Result 
    = ImplicitConversionSequence::Indistinguishable;
  while (UnwrapSimilarPointerTypes(T1, T2)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left
    // to unwrap. This essentially mimics what
    // IsQualificationConversion does, but here we're checking for a
    // strict subset of qualifiers.
    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
      // The qualifiers are the same, so this doesn't tell us anything
      // about how the sequences rank.
      ;
    else if (T2.isMoreQualifiedThan(T1)) {
      // T1 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Worse)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;
      
      Result = ImplicitConversionSequence::Better;
    } else if (T1.isMoreQualifiedThan(T2)) {
      // T2 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Better)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;
      
      Result = ImplicitConversionSequence::Worse;
    } else {
      // Qualifiers are disjoint.
      return ImplicitConversionSequence::Indistinguishable;
    }

    // If the types after this point are equivalent, we're done.
    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
      break;
  }

  // Check that the winning standard conversion sequence isn't using
  // the deprecated string literal array to pointer conversion.
  switch (Result) {
  case ImplicitConversionSequence::Better:
    if (SCS1.Deprecated)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;

  case ImplicitConversionSequence::Indistinguishable:
    break;

  case ImplicitConversionSequence::Worse:
    if (SCS2.Deprecated)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;
  }

  return Result;
}

/// CompareDerivedToBaseConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
ImplicitConversionSequence::CompareKind
Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2) {
  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);

  // Adjust the types we're converting from via the array-to-pointer
  // conversion, if we need to.
  if (SCS1.First == ICK_Array_To_Pointer)
    FromType1 = Context.getArrayDecayedType(FromType1);
  if (SCS2.First == ICK_Array_To_Pointer)
    FromType2 = Context.getArrayDecayedType(FromType2);

  // Canonicalize all of the types.
  FromType1 = Context.getCanonicalType(FromType1);
  ToType1 = Context.getCanonicalType(ToType1);
  FromType2 = Context.getCanonicalType(FromType2);
  ToType2 = Context.getCanonicalType(ToType2);

  // C++ [over.ics.rank]p4b4:
  //
  //   If class B is derived directly or indirectly from class A and
  //   class C is derived directly or indirectly from B,
  //
  // FIXME: Verify that in this section we're talking about the
  // unqualified forms of C, B, and A.
  if (SCS1.Second == ICK_Pointer_Conversion && 
      SCS2.Second == ICK_Pointer_Conversion) {
    //   -- conversion of C* to B* is better than conversion of C* to A*,
    QualType FromPointee1 
      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType ToPointee1 
      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2
      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType ToPointee2
      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (IsDerivedFrom(ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Worse;
    }
  }

  // FIXME: many more sub-bullets of C++ [over.ics.rank]p4b4 to
  // implement.
  return ImplicitConversionSequence::Indistinguishable;
}

/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments.
void 
Sema::AddOverloadCandidate(FunctionDecl *Function, 
                           Expr **Args, unsigned NumArgs,
                           OverloadCandidateSet& CandidateSet)
{
  const FunctionTypeProto* Proto 
    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
  assert(Proto && "Functions without a prototype cannot be overloaded");

  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Function;

  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
  if (NumArgs < MinRequiredArgs) {
    // Not enough arguments.
    Candidate.Viable = false;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Viable = true;
  Candidate.Conversions.resize(NumArgs);
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx] 
        = TryCopyInitialization(Args[ArgIdx], ParamType);
      if (Candidate.Conversions[ArgIdx].ConversionKind 
            == ImplicitConversionSequence::BadConversion)
        Candidate.Viable = false;
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx].ConversionKind 
        = ImplicitConversionSequence::EllipsisConversion;
    }
  }
}

/// AddOverloadCandidates - Add all of the function overloads in Ovl
/// to the candidate set.
void 
Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl, 
                            Expr **Args, unsigned NumArgs,
                            OverloadCandidateSet& CandidateSet)
{
  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
       Func != Ovl->function_end(); ++Func)
    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
}

/// isBetterOverloadCandidate - Determines whether the first overload
/// candidate is a better candidate than the second (C++ 13.3.3p1).
bool 
Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
                                const OverloadCandidate& Cand2)
{
  // Define viable functions to be better candidates than non-viable
  // functions.
  if (!Cand2.Viable)
    return Cand1.Viable;
  else if (!Cand1.Viable)
    return false;

  // FIXME: Deal with the implicit object parameter for static member
  // functions. (C++ 13.3.3p1).

  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
  // function than another viable function F2 if for all arguments i,
  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
  // then...
  unsigned NumArgs = Cand1.Conversions.size();
  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
  bool HasBetterConversion = false;
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
                                               Cand2.Conversions[ArgIdx])) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      HasBetterConversion = true;
      break;

    case ImplicitConversionSequence::Worse:
      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing.
      break;
    }
  }

  if (HasBetterConversion)
    return true;

  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.

  return false;
}

/// BestViableFunction - Computes the best viable function (C++ 13.3.3) 
/// within an overload candidate set. If overloading is successful,
/// the result will be OR_Success and Best will be set to point to the
/// best viable function within the candidate set. Otherwise, one of
/// several kinds of errors will be returned; see
/// Sema::OverloadingResult.
Sema::OverloadingResult 
Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
                         OverloadCandidateSet::iterator& Best)
{
  // Find the best viable function.
  Best = CandidateSet.end();
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable) {
      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
        Best = Cand;
    }
  }

  // If we didn't find any viable functions, abort.
  if (Best == CandidateSet.end())
    return OR_No_Viable_Function;

  // Make sure that this function is better than every other viable
  // function. If not, we have an ambiguity.
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable && 
        Cand != Best &&
        !isBetterOverloadCandidate(*Best, *Cand))
      return OR_Ambiguous;
  }
  
  // Best is the best viable function.
  return OR_Success;
}

/// PrintOverloadCandidates - When overload resolution fails, prints
/// diagnostic messages containing the candidates in the candidate
/// set. If OnlyViable is true, only viable candidates will be printed.
void 
Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
                              bool OnlyViable)
{
  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
                             LastCand = CandidateSet.end();
  for (; Cand != LastCand; ++Cand) {
    if (Cand->Viable ||!OnlyViable)
      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
  }
}

} // end namespace clang
OpenPOWER on IntegriCloud