summaryrefslogtreecommitdiffstats
path: root/clang/lib/Sema/SemaExpr.cpp
blob: ecc8e240c7490321eb5278c6f366ea76d6d70f7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;

//===----------------------------------------------------------------------===//
//  Standard Promotions and Conversions
//===----------------------------------------------------------------------===//

/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
  QualType Ty = E->getType();
  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");

  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
    Ty = E->getType();
  }
  if (Ty->isFunctionType())
    ImpCastExprToType(E, Context.getPointerType(Ty));
  else if (Ty->isArrayType()) {
    // In C90 mode, arrays only promote to pointers if the array expression is
    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    // type 'array of type' is converted to an expression that has type 'pointer
    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    // that has type 'array of type' ...".  The relevant change is "an lvalue"
    // (C90) to "an expression" (C99).
    //
    // C++ 4.2p1:
    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    // T" can be converted to an rvalue of type "pointer to T".
    //
    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
        E->isLvalue(Context) == Expr::LV_Valid)
      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
  }
}

/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are 
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
  QualType Ty = Expr->getType();
  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
  
  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
    Ty = Expr->getType();
  }
  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
    ImpCastExprToType(Expr, Context.IntTy);
  else
    DefaultFunctionArrayConversion(Expr);
  
  return Expr;
}

/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to 
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
  QualType Ty = Expr->getType();
  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
  
  // If this is a 'float' (CVR qualified or typedef) promote to double.
  if (const BuiltinType *BT = Ty->getAsBuiltinType())
    if (BT->getKind() == BuiltinType::Float)
      return ImpCastExprToType(Expr, Context.DoubleTy);
  
  UsualUnaryConversions(Expr);
}

/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is 
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
                                          bool isCompAssign) {
  if (!isCompAssign) {
    UsualUnaryConversions(lhsExpr);
    UsualUnaryConversions(rhsExpr);
  }
  // For conversion purposes, we ignore any qualifiers. 
  // For example, "const float" and "float" are equivalent.
  QualType lhs =
    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
  QualType rhs = 
    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
  
  // If both types are identical, no conversion is needed.
  if (lhs == rhs)
    return lhs;
  
  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
  // The caller can deal with this (e.g. pointer + int).
  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
    return lhs;
    
  // At this point, we have two different arithmetic types. 
  
  // Handle complex types first (C99 6.3.1.8p1).
  if (lhs->isComplexType() || rhs->isComplexType()) {
    // if we have an integer operand, the result is the complex type.
    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { 
      // convert the rhs to the lhs complex type.
      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
      return lhs;
    }
    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { 
      // convert the lhs to the rhs complex type.
      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
      return rhs;
    }
    // This handles complex/complex, complex/float, or float/complex.
    // When both operands are complex, the shorter operand is converted to the 
    // type of the longer, and that is the type of the result. This corresponds 
    // to what is done when combining two real floating-point operands. 
    // The fun begins when size promotion occur across type domains. 
    // From H&S 6.3.4: When one operand is complex and the other is a real
    // floating-point type, the less precise type is converted, within it's 
    // real or complex domain, to the precision of the other type. For example,
    // when combining a "long double" with a "double _Complex", the 
    // "double _Complex" is promoted to "long double _Complex".
    int result = Context.getFloatingTypeOrder(lhs, rhs);
    
    if (result > 0) { // The left side is bigger, convert rhs. 
      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
      if (!isCompAssign)
        ImpCastExprToType(rhsExpr, rhs);
    } else if (result < 0) { // The right side is bigger, convert lhs. 
      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
      if (!isCompAssign)
        ImpCastExprToType(lhsExpr, lhs);
    } 
    // At this point, lhs and rhs have the same rank/size. Now, make sure the
    // domains match. This is a requirement for our implementation, C99
    // does not require this promotion.
    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
        if (!isCompAssign)
          ImpCastExprToType(lhsExpr, rhs);
        return rhs;
      } else { // handle "_Complex double, double".
        if (!isCompAssign)
          ImpCastExprToType(rhsExpr, lhs);
        return lhs;
      }
    }
    return lhs; // The domain/size match exactly.
  }
  // Now handle "real" floating types (i.e. float, double, long double).
  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
    // if we have an integer operand, the result is the real floating type.
    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { 
      // convert rhs to the lhs floating point type.
      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
      return lhs;
    }
    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { 
      // convert lhs to the rhs floating point type.
      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
      return rhs;
    }
    // We have two real floating types, float/complex combos were handled above.
    // Convert the smaller operand to the bigger result.
    int result = Context.getFloatingTypeOrder(lhs, rhs);
    
    if (result > 0) { // convert the rhs
      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
      return lhs;
    }
    if (result < 0) { // convert the lhs
      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
      return rhs;
    }
    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
  }
  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
    // Handle GCC complex int extension.
    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();

    if (lhsComplexInt && rhsComplexInt) {
      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), 
                                      rhsComplexInt->getElementType()) >= 0) {
        // convert the rhs
        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
        return lhs;
      }
      if (!isCompAssign) 
        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
      return rhs;
    } else if (lhsComplexInt && rhs->isIntegerType()) {
      // convert the rhs to the lhs complex type.
      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
      return lhs;
    } else if (rhsComplexInt && lhs->isIntegerType()) {
      // convert the lhs to the rhs complex type.
      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
      return rhs;
    }
  }
  // Finally, we have two differing integer types.
  // The rules for this case are in C99 6.3.1.8
  int compare = Context.getIntegerTypeOrder(lhs, rhs);
  bool lhsSigned = lhs->isSignedIntegerType(),
       rhsSigned = rhs->isSignedIntegerType();
  QualType destType;
  if (lhsSigned == rhsSigned) {
    // Same signedness; use the higher-ranked type
    destType = compare >= 0 ? lhs : rhs;
  } else if (compare != (lhsSigned ? 1 : -1)) {
    // The unsigned type has greater than or equal rank to the
    // signed type, so use the unsigned type
    destType = lhsSigned ? rhs : lhs;
  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
    // The two types are different widths; if we are here, that
    // means the signed type is larger than the unsigned type, so
    // use the signed type.
    destType = lhsSigned ? lhs : rhs;
  } else {
    // The signed type is higher-ranked than the unsigned type,
    // but isn't actually any bigger (like unsigned int and long
    // on most 32-bit systems).  Use the unsigned type corresponding
    // to the signed type.
    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
  }
  if (!isCompAssign) {
    ImpCastExprToType(lhsExpr, destType);
    ImpCastExprToType(rhsExpr, destType);
  }
  return destType;
}

//===----------------------------------------------------------------------===//
//  Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//


/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens.  However, the common case is that StringToks points to one
/// string.
/// 
Action::ExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
  assert(NumStringToks && "Must have at least one string!");

  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
  if (Literal.hadError)
    return ExprResult(true);

  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
  for (unsigned i = 0; i != NumStringToks; ++i)
    StringTokLocs.push_back(StringToks[i].getLocation());

  // Verify that pascal strings aren't too large.
  if (Literal.Pascal && Literal.GetStringLength() > 256)
    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
                SourceRange(StringToks[0].getLocation(),
                            StringToks[NumStringToks-1].getLocation()));
  
  QualType StrTy = Context.CharTy;
  if (Literal.AnyWide) StrTy = Context.getWCharType();
  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;

  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
  if (getLangOptions().CPlusPlus)
    StrTy.addConst();
  
  // Get an array type for the string, according to C99 6.4.5.  This includes
  // the nul terminator character as well as the string length for pascal
  // strings.
  StrTy = Context.getConstantArrayType(StrTy,
                                   llvm::APInt(32, Literal.GetStringLength()+1),
                                       ArrayType::Normal, 0);
  
  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), 
                           Literal.AnyWide, StrTy, 
                           StringToks[0].getLocation(),
                           StringToks[NumStringToks-1].getLocation());
}

/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// FIXME: This will create BlockDeclRefExprs for global variables,
/// function references, etc which is suboptimal :) and breaks
/// things like "integer constant expression" tests.
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
                                              ValueDecl *VD) {
  // If the value is defined inside the block, we couldn't snapshot it even if
  // we wanted to.
  if (CurBlock->TheDecl == VD->getDeclContext())
    return false;
  
  // If this is an enum constant or function, it is constant, don't snapshot.
  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
    return false;

  // If this is a reference to an extern, static, or global variable, no need to
  // snapshot it.
  // FIXME: What about 'const' variables in C++?
  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
    return Var->hasLocalStorage();
  
  return true;
}  
    


/// ActOnIdentifierExpr - The parser read an identifier in expression context,
/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
/// identifier is used in a function call context.
Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
                                           IdentifierInfo &II,
                                           bool HasTrailingLParen) {
  // Could be enum-constant, value decl, instance variable, etc.
  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
  
  // If this reference is in an Objective-C method, then ivar lookup happens as
  // well.
  if (getCurMethodDecl()) {
    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
    // There are two cases to handle here.  1) scoped lookup could have failed,
    // in which case we should look for an ivar.  2) scoped lookup could have
    // found a decl, but that decl is outside the current method (i.e. a global
    // variable).  In these two cases, we do a lookup for an ivar with this
    // name, if the lookup suceeds, we replace it our current decl.
    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
        // FIXME: This should use a new expr for a direct reference, don't turn
        // this into Self->ivar, just return a BareIVarExpr or something.
        IdentifierInfo &II = Context.Idents.get("self");
        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
        return new ObjCIvarRefExpr(IV, IV->getType(), Loc, 
                                 static_cast<Expr*>(SelfExpr.Val), true, true);
      }
    }
    // Needed to implement property "super.method" notation.
    if (SD == 0 && &II == SuperID) {
      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
                     getCurMethodDecl()->getClassInterface()));
      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
    }
  }
  if (D == 0) {
    // Otherwise, this could be an implicitly declared function reference (legal
    // in C90, extension in C99).
    if (HasTrailingLParen &&
        !getLangOptions().CPlusPlus) // Not in C++.
      D = ImplicitlyDefineFunction(Loc, II, S);
    else {
      // If this name wasn't predeclared and if this is not a function call,
      // diagnose the problem.
      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
    }
  }
  
  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
      if (MD->isStatic())
        // "invalid use of member 'x' in static member function"
        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
                    FD->getName());
      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
        // "invalid use of nonstatic data member 'x'"
        return Diag(Loc, diag::err_invalid_non_static_member_use,
                    FD->getName());

      if (FD->isInvalidDecl())
        return true;

      return new DeclRefExpr(FD, FD->getType(), Loc);
    }

    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
  }
  if (isa<TypedefDecl>(D))
    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
  if (isa<ObjCInterfaceDecl>(D))
    return Diag(Loc, diag::err_unexpected_interface, II.getName());
  if (isa<NamespaceDecl>(D))
    return Diag(Loc, diag::err_unexpected_namespace, II.getName());

  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);

  ValueDecl *VD = cast<ValueDecl>(D);
  
  // check if referencing an identifier with __attribute__((deprecated)).
  if (VD->getAttr<DeprecatedAttr>())
    Diag(Loc, diag::warn_deprecated, VD->getName());

  // Only create DeclRefExpr's for valid Decl's.
  if (VD->isInvalidDecl())
    return true;
  
  // If the identifier reference is inside a block, and it refers to a value
  // that is outside the block, create a BlockDeclRefExpr instead of a
  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
  // the block is formed.
  //
  // We do not do this for things like enum constants, global variables, etc,
  // as they do not get snapshotted.
  //
  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
    // The BlocksAttr indicates the variable is bound by-reference.
    if (VD->getAttr<BlocksAttr>())
      return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
      
    // Variable will be bound by-copy, make it const within the closure.
    VD->getType().addConst();
    return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
  }
  // If this reference is not in a block or if the referenced variable is
  // within the block, create a normal DeclRefExpr.
  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc);
}

Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
                                           tok::TokenKind Kind) {
  PredefinedExpr::IdentType IT;
  
  switch (Kind) {
  default: assert(0 && "Unknown simple primary expr!");
  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
  }

  // Verify that this is in a function context.
  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
    return Diag(Loc, diag::err_predef_outside_function);
  
  // Pre-defined identifiers are of type char[x], where x is the length of the
  // string.
  unsigned Length;
  if (getCurFunctionDecl())
    Length = getCurFunctionDecl()->getIdentifier()->getLength();
  else
    Length = getCurMethodDecl()->getSynthesizedMethodSize();
  
  llvm::APInt LengthI(32, Length + 1);
  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
  return new PredefinedExpr(Loc, ResTy, IT);
}

Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
  llvm::SmallString<16> CharBuffer;
  CharBuffer.resize(Tok.getLength());
  const char *ThisTokBegin = &CharBuffer[0];
  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
  
  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
                            Tok.getLocation(), PP);
  if (Literal.hadError())
    return ExprResult(true);

  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;

  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
                              Tok.getLocation());
}

Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
  // fast path for a single digit (which is quite common). A single digit 
  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
  if (Tok.getLength() == 1) {
    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
    
    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
                                         Context.IntTy, 
                                         Tok.getLocation()));
  }
  llvm::SmallString<512> IntegerBuffer;
  // Add padding so that NumericLiteralParser can overread by one character.
  IntegerBuffer.resize(Tok.getLength()+1);
  const char *ThisTokBegin = &IntegerBuffer[0];
  
  // Get the spelling of the token, which eliminates trigraphs, etc.
  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
  
  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, 
                               Tok.getLocation(), PP);
  if (Literal.hadError)
    return ExprResult(true);
  
  Expr *Res;
  
  if (Literal.isFloatingLiteral()) {
    QualType Ty;
    if (Literal.isFloat)
      Ty = Context.FloatTy;
    else if (!Literal.isLong)
      Ty = Context.DoubleTy;
    else
      Ty = Context.LongDoubleTy;

    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);

    // isExact will be set by GetFloatValue().
    bool isExact = false;
    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
                              Ty, Tok.getLocation());
    
  } else if (!Literal.isIntegerLiteral()) {
    return ExprResult(true);
  } else {
    QualType Ty;

    // long long is a C99 feature.
    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
        Literal.isLongLong)
      Diag(Tok.getLocation(), diag::ext_longlong);

    // Get the value in the widest-possible width.
    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
   
    if (Literal.GetIntegerValue(ResultVal)) {
      // If this value didn't fit into uintmax_t, warn and force to ull.
      Diag(Tok.getLocation(), diag::warn_integer_too_large);
      Ty = Context.UnsignedLongLongTy;
      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
             "long long is not intmax_t?");
    } else {
      // If this value fits into a ULL, try to figure out what else it fits into
      // according to the rules of C99 6.4.4.1p5.
      
      // Octal, Hexadecimal, and integers with a U suffix are allowed to
      // be an unsigned int.
      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;

      // Check from smallest to largest, picking the smallest type we can.
      unsigned Width = 0;
      if (!Literal.isLong && !Literal.isLongLong) {
        // Are int/unsigned possibilities?
        unsigned IntSize = Context.Target.getIntWidth();
        
        // Does it fit in a unsigned int?
        if (ResultVal.isIntN(IntSize)) {
          // Does it fit in a signed int?
          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
            Ty = Context.IntTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedIntTy;
          Width = IntSize;
        }
      }
      
      // Are long/unsigned long possibilities?
      if (Ty.isNull() && !Literal.isLongLong) {
        unsigned LongSize = Context.Target.getLongWidth();
     
        // Does it fit in a unsigned long?
        if (ResultVal.isIntN(LongSize)) {
          // Does it fit in a signed long?
          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
            Ty = Context.LongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongTy;
          Width = LongSize;
        }
      }      
      
      // Finally, check long long if needed.
      if (Ty.isNull()) {
        unsigned LongLongSize = Context.Target.getLongLongWidth();
        
        // Does it fit in a unsigned long long?
        if (ResultVal.isIntN(LongLongSize)) {
          // Does it fit in a signed long long?
          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
            Ty = Context.LongLongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongLongTy;
          Width = LongLongSize;
        }
      }
      
      // If we still couldn't decide a type, we probably have something that
      // does not fit in a signed long long, but has no U suffix.
      if (Ty.isNull()) {
        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
        Ty = Context.UnsignedLongLongTy;
        Width = Context.Target.getLongLongWidth();
      }
      
      if (ResultVal.getBitWidth() != Width)
        ResultVal.trunc(Width);
    }

    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
  }
  
  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
  if (Literal.isImaginary)
    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
  
  return Res;
}

Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
                                        ExprTy *Val) {
  Expr *E = (Expr *)Val;
  assert((E != 0) && "ActOnParenExpr() missing expr");
  return new ParenExpr(L, R, E);
}

/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType, 
                                         SourceLocation OpLoc,
                                         const SourceRange &ExprRange,
                                         bool isSizeof) {
  // C99 6.5.3.4p1:
  if (isa<FunctionType>(exprType) && isSizeof)
    // alignof(function) is allowed.
    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
  else if (exprType->isVoidType())
    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
         ExprRange);
  else if (exprType->isIncompleteType()) {
    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : 
                           diag::err_alignof_incomplete_type,
         exprType.getAsString(), ExprRange);
    return QualType(); // error
  }
  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
  return Context.getSizeType();
}

Action::ExprResult Sema::
ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof, 
                           SourceLocation LPLoc, TypeTy *Ty,
                           SourceLocation RPLoc) {
  // If error parsing type, ignore.
  if (Ty == 0) return true;
  
  // Verify that this is a valid expression.
  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
  
  QualType resultType =
    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);

  if (resultType.isNull())
    return true;
  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
}

QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
  DefaultFunctionArrayConversion(V);
  
  // These operators return the element type of a complex type.
  if (const ComplexType *CT = V->getType()->getAsComplexType())
    return CT->getElementType();
  
  // Otherwise they pass through real integer and floating point types here.
  if (V->getType()->isArithmeticType())
    return V->getType();
  
  // Reject anything else.
  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
  return QualType();
}



Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc, 
                                             tok::TokenKind Kind,
                                             ExprTy *Input) {
  UnaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown unary op!");
  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
  }
  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
  if (result.isNull())
    return true;
  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
}

Action::ExprResult Sema::
ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
                        ExprTy *Idx, SourceLocation RLoc) {
  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);

  // Perform default conversions.
  DefaultFunctionArrayConversion(LHSExp);
  DefaultFunctionArrayConversion(RHSExp);
  
  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();

  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
  // in the subscript position. As a result, we need to derive the array base 
  // and index from the expression types.
  Expr *BaseExpr, *IndexExpr;
  QualType ResultType;
  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    // FIXME: need to deal with const...
    ResultType = PTy->getPointeeType();
  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
     // Handle the uncommon case of "123[Ptr]".
    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    // FIXME: need to deal with const...
    ResultType = PTy->getPointeeType();
  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
    BaseExpr = LHSExp;    // vectors: V[123]
    IndexExpr = RHSExp;
    
    // Component access limited to variables (reject vec4.rg[1]).
    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
        !isa<ExtVectorElementExpr>(BaseExpr))
      return Diag(LLoc, diag::err_ext_vector_component_access, 
                  SourceRange(LLoc, RLoc));
    // FIXME: need to deal with const...
    ResultType = VTy->getElementType();
  } else {
    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value, 
                RHSExp->getSourceRange());
  }              
  // C99 6.5.2.1p1
  if (!IndexExpr->getType()->isIntegerType())
    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
                IndexExpr->getSourceRange());

  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
  // the following check catches trying to index a pointer to a function (e.g.
  // void (*)(int)) and pointers to incomplete types.  Functions are not
  // objects in C99.
  if (!ResultType->isObjectType())
    return Diag(BaseExpr->getLocStart(), 
                diag::err_typecheck_subscript_not_object,
                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());

  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
}

QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
                        IdentifierInfo &CompName, SourceLocation CompLoc) {
  const ExtVectorType *vecType = baseType->getAsExtVectorType();

  // This flag determines whether or not the component is to be treated as a 
  // special name, or a regular GLSL-style component access.
  bool SpecialComponent = false;
  
  // The vector accessor can't exceed the number of elements.
  const char *compStr = CompName.getName();
  if (strlen(compStr) > vecType->getNumElements()) {
    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length, 
                baseType.getAsString(), SourceRange(CompLoc));
    return QualType();
  }

  // Check that we've found one of the special components, or that the component
  // names must come from the same set.
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 
      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
    SpecialComponent = true;
  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
    do
      compStr++;
    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
    do
      compStr++;
    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
    do 
      compStr++;
    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
  }
    
  if (!SpecialComponent && *compStr) { 
    // We didn't get to the end of the string. This means the component names
    // didn't come from the same set *or* we encountered an illegal name.
    Diag(OpLoc, diag::err_ext_vector_component_name_illegal, 
         std::string(compStr,compStr+1), SourceRange(CompLoc));
    return QualType();
  }
  // Each component accessor can't exceed the vector type.
  compStr = CompName.getName();
  while (*compStr) {
    if (vecType->isAccessorWithinNumElements(*compStr))
      compStr++;
    else
      break;
  }
  if (!SpecialComponent && *compStr) { 
    // We didn't get to the end of the string. This means a component accessor
    // exceeds the number of elements in the vector.
    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length, 
                baseType.getAsString(), SourceRange(CompLoc));
    return QualType();
  }

  // If we have a special component name, verify that the current vector length
  // is an even number, since all special component names return exactly half
  // the elements.
  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
    Diag(OpLoc, diag::err_ext_vector_component_requires_even, 
         baseType.getAsString(), SourceRange(CompLoc));
    return QualType();
  }
  
  // The component accessor looks fine - now we need to compute the actual type.
  // The vector type is implied by the component accessor. For example, 
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
                                       : strlen(CompName.getName());
  if (CompSize == 1)
    return vecType->getElementType();
    
  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
  // Now look up the TypeDefDecl from the vector type. Without this, 
  // diagostics look bad. We want extended vector types to appear built-in.
  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
      return Context.getTypedefType(ExtVectorDecls[i]);
  }
  return VT; // should never get here (a typedef type should always be found).
}

/// constructSetterName - Return the setter name for the given
/// identifier, i.e. "set" + Name where the initial character of Name
/// has been capitalized.
// FIXME: Merge with same routine in Parser. But where should this
// live?
static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
                                           const IdentifierInfo *Name) {
  unsigned N = Name->getLength();
  char *SelectorName = new char[3 + N];
  memcpy(SelectorName, "set", 3);
  memcpy(&SelectorName[3], Name->getName(), N);
  SelectorName[3] = toupper(SelectorName[3]);

  IdentifierInfo *Setter = 
    &Idents.get(SelectorName, &SelectorName[3 + N]);
  delete[] SelectorName;
  return Setter;
}

Action::ExprResult Sema::
ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
                         tok::TokenKind OpKind, SourceLocation MemberLoc,
                         IdentifierInfo &Member) {
  Expr *BaseExpr = static_cast<Expr *>(Base);
  assert(BaseExpr && "no record expression");

  // Perform default conversions.
  DefaultFunctionArrayConversion(BaseExpr);
  
  QualType BaseType = BaseExpr->getType();
  assert(!BaseType.isNull() && "no type for member expression");
  
  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
  // must have pointer type, and the accessed type is the pointee.
  if (OpKind == tok::arrow) {
    if (const PointerType *PT = BaseType->getAsPointerType())
      BaseType = PT->getPointeeType();
    else
      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
                  BaseType.getAsString(), BaseExpr->getSourceRange());
  }
  
  // Handle field access to simple records.  This also handles access to fields
  // of the ObjC 'id' struct.
  if (const RecordType *RTy = BaseType->getAsRecordType()) {
    RecordDecl *RDecl = RTy->getDecl();
    if (RTy->isIncompleteType())
      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
                  BaseExpr->getSourceRange());
    // The record definition is complete, now make sure the member is valid.
    FieldDecl *MemberDecl = RDecl->getMember(&Member);
    if (!MemberDecl)
      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
                  BaseExpr->getSourceRange());

    // Figure out the type of the member; see C99 6.5.2.3p3
    // FIXME: Handle address space modifiers
    QualType MemberType = MemberDecl->getType();
    unsigned combinedQualifiers =
        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
    MemberType = MemberType.getQualifiedType(combinedQualifiers);

    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
                          MemberLoc, MemberType);
  }
  
  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
  // (*Obj).ivar.
  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, 
                                 OpKind == tok::arrow);
    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
                IFTy->getDecl()->getName(), Member.getName(),
                BaseExpr->getSourceRange());
  }
  
  // Handle Objective-C property access, which is "Obj.property" where Obj is a
  // pointer to a (potentially qualified) interface type.
  const PointerType *PTy;
  const ObjCInterfaceType *IFTy;
  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
    ObjCInterfaceDecl *IFace = IFTy->getDecl();

    // Search for a declared property first.
    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
    
    // Check protocols on qualified interfaces.
    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
         E = IFTy->qual_end(); I != E; ++I)
      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);

    // If that failed, look for an "implicit" property by seeing if the nullary
    // selector is implemented.

    // FIXME: The logic for looking up nullary and unary selectors should be
    // shared with the code in ActOnInstanceMessage.

    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
    
    // If this reference is in an @implementation, check for 'private' methods.
    if (!Getter)
      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
          if (ObjCImplementationDecl *ImpDecl = 
              ObjCImplementations[ClassDecl->getIdentifier()])
            Getter = ImpDecl->getInstanceMethod(Sel);

    // Look through local category implementations associated with the class.
    if (!Getter) {
      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
      }
    }
    if (Getter) {
      // If we found a getter then this may be a valid dot-reference, we
      // need to also look for the matching setter.
      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
                                                       &Member);
      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);

      if (!Setter) {
        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
            if (ObjCImplementationDecl *ImpDecl = 
                ObjCImplementations[ClassDecl->getIdentifier()])
              Setter = ImpDecl->getInstanceMethod(SetterSel);
      }

      // FIXME: There are some issues here. First, we are not
      // diagnosing accesses to read-only properties because we do not
      // know if this is a getter or setter yet. Second, we are
      // checking that the type of the setter matches the type we
      // expect.
      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(), 
                                     MemberLoc, BaseExpr);
    }
  }
  // Handle properties on qualified "id" protocols.
  const ObjCQualifiedIdType *QIdTy;
  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
    // Check protocols on qualified interfaces.
    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
         E = QIdTy->qual_end(); I != E; ++I)
      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
  }  
  // Handle 'field access' to vectors, such as 'V.xx'.
  if (BaseType->isExtVectorType() && OpKind == tok::period) {
    // Component access limited to variables (reject vec4.rg.g).
    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
        !isa<ExtVectorElementExpr>(BaseExpr))
      return Diag(MemberLoc, diag::err_ext_vector_component_access, 
                  BaseExpr->getSourceRange());
    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
    if (ret.isNull())
      return true;
    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
  }
  
  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
              BaseType.getAsString(), BaseExpr->getSourceRange());
}

/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::ExprResult Sema::
ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
              ExprTy **args, unsigned NumArgs,
              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
  Expr *Fn = static_cast<Expr *>(fn);
  Expr **Args = reinterpret_cast<Expr**>(args);
  assert(Fn && "no function call expression");
  FunctionDecl *FDecl = NULL;
  OverloadedFunctionDecl *Ovl = NULL;

  // If we're directly calling a function or a set of overloaded
  // functions, get the appropriate declaration.
  {
    DeclRefExpr *DRExpr = NULL;
    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
    else 
      DRExpr = dyn_cast<DeclRefExpr>(Fn);

    if (DRExpr) {
      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
    }
  }

  // If we have a set of overloaded functions, perform overload
  // resolution to pick the function.
  if (Ovl) {
    OverloadCandidateSet CandidateSet;
    OverloadCandidateSet::iterator Best;
    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
    switch (BestViableFunction(CandidateSet, Best)) {
    case OR_Success: 
      {
        // Success! Let the remainder of this function build a call to
        // the function selected by overload resolution.
        FDecl = Best->Function;
        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(), 
                                      Fn->getSourceRange().getBegin());
        delete Fn;
        Fn = NewFn;
      }
      break;

    case OR_No_Viable_Function:
      if (CandidateSet.empty())
        Diag(Fn->getSourceRange().getBegin(), 
             diag::err_ovl_no_viable_function_in_call, Ovl->getName(),
             Fn->getSourceRange());
      else {
        Diag(Fn->getSourceRange().getBegin(), 
             diag::err_ovl_no_viable_function_in_call_with_cands, 
             Ovl->getName(), Fn->getSourceRange());
        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
      }
      return true;

    case OR_Ambiguous:
      Diag(Fn->getSourceRange().getBegin(), 
           diag::err_ovl_ambiguous_call, Ovl->getName(), 
           Fn->getSourceRange());
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
      return true;
    }
  }

  // Promote the function operand.
  UsualUnaryConversions(Fn);

  // Make the call expr early, before semantic checks.  This guarantees cleanup
  // of arguments and function on error.
  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
                                                 Context.BoolTy, RParenLoc));
  const FunctionType *FuncT;
  if (!Fn->getType()->isBlockPointerType()) {
    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
    // have type pointer to function".
    const PointerType *PT = Fn->getType()->getAsPointerType();
    if (PT == 0)
      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
                  Fn->getSourceRange());
    FuncT = PT->getPointeeType()->getAsFunctionType();
  } else { // This is a block call.
    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
                getAsFunctionType();
  }
  if (FuncT == 0)
    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
                Fn->getSourceRange());
  
  // We know the result type of the call, set it.
  TheCall->setType(FuncT->getResultType());
    
  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by 
    // assignment, to the types of the corresponding parameter, ...
    unsigned NumArgsInProto = Proto->getNumArgs();
    unsigned NumArgsToCheck = NumArgs;
    
    // If too few arguments are available (and we don't have default
    // arguments for the remaining parameters), don't make the call.
    if (NumArgs < NumArgsInProto) {
      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
        // Use default arguments for missing arguments
        NumArgsToCheck = NumArgsInProto;
        TheCall->setNumArgs(NumArgsInProto);
      } else
        return Diag(RParenLoc, 
                    !Fn->getType()->isBlockPointerType()
                      ? diag::err_typecheck_call_too_few_args
                      : diag::err_typecheck_block_too_few_args,
                    Fn->getSourceRange());
    }

    // If too many are passed and not variadic, error on the extras and drop
    // them.
    if (NumArgs > NumArgsInProto) {
      if (!Proto->isVariadic()) {
        Diag(Args[NumArgsInProto]->getLocStart(), 
               !Fn->getType()->isBlockPointerType()
                 ? diag::err_typecheck_call_too_many_args
                 : diag::err_typecheck_block_too_many_args, 
             Fn->getSourceRange(),
             SourceRange(Args[NumArgsInProto]->getLocStart(),
                         Args[NumArgs-1]->getLocEnd()));
        // This deletes the extra arguments.
        TheCall->setNumArgs(NumArgsInProto);
      }
      NumArgsToCheck = NumArgsInProto;
    }
    
    // Continue to check argument types (even if we have too few/many args).
    for (unsigned i = 0; i != NumArgsToCheck; i++) {
      QualType ProtoArgType = Proto->getArgType(i);

      Expr *Arg;
      if (i < NumArgs) 
        Arg = Args[i];
      else 
        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
      QualType ArgType = Arg->getType();

      // Compute implicit casts from the operand to the formal argument type.
      AssignConvertType ConvTy =
        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
      TheCall->setArg(i, Arg);

      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
                                   ArgType, Arg, "passing"))
        return true;
    }
    
    // If this is a variadic call, handle args passed through "...".
    if (Proto->isVariadic()) {
      // Promote the arguments (C99 6.5.2.2p7).
      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
        Expr *Arg = Args[i];
        DefaultArgumentPromotion(Arg);
        TheCall->setArg(i, Arg);
      }
    }
  } else {
    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
    
    // Promote the arguments (C99 6.5.2.2p6).
    for (unsigned i = 0; i != NumArgs; i++) {
      Expr *Arg = Args[i];
      DefaultArgumentPromotion(Arg);
      TheCall->setArg(i, Arg);
    }
  }

  // Do special checking on direct calls to functions.
  if (FDecl)
    return CheckFunctionCall(FDecl, TheCall.take());

  return TheCall.take();
}

Action::ExprResult Sema::
ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
                     SourceLocation RParenLoc, ExprTy *InitExpr) {
  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
  QualType literalType = QualType::getFromOpaquePtr(Ty);
  // FIXME: put back this assert when initializers are worked out.
  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
  Expr *literalExpr = static_cast<Expr*>(InitExpr);

  if (literalType->isArrayType()) {
    if (literalType->isVariableArrayType())
      return Diag(LParenLoc,
                  diag::err_variable_object_no_init,
                  SourceRange(LParenLoc,
                              literalExpr->getSourceRange().getEnd()));
  } else if (literalType->isIncompleteType()) {
    return Diag(LParenLoc,
                diag::err_typecheck_decl_incomplete_type,
                literalType.getAsString(),
                SourceRange(LParenLoc,
                            literalExpr->getSourceRange().getEnd()));
  }

  if (CheckInitializerTypes(literalExpr, literalType))
    return true;

  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
  if (isFileScope) { // 6.5.2.5p3
    if (CheckForConstantInitializer(literalExpr, literalType))
      return true;
  }
  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
}

Action::ExprResult Sema::
ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
              SourceLocation RBraceLoc) {
  Expr **InitList = reinterpret_cast<Expr**>(initlist);

  // Semantic analysis for initializers is done by ActOnDeclarator() and
  // CheckInitializer() - it requires knowledge of the object being intialized. 
  
  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
  return E;
}

/// CheckCastTypes - Check type constraints for casting between types.
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
  UsualUnaryConversions(castExpr);

  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
  // type needs to be scalar.
  if (castType->isVoidType()) {
    // Cast to void allows any expr type.
  } else if (!castType->isScalarType() && !castType->isVectorType()) {
    // GCC struct/union extension: allow cast to self.
    if (Context.getCanonicalType(castType) !=
        Context.getCanonicalType(castExpr->getType()) ||
        (!castType->isStructureType() && !castType->isUnionType())) {
      // Reject any other conversions to non-scalar types.
      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar, 
                  castType.getAsString(), castExpr->getSourceRange());
    }
      
    // accept this, but emit an ext-warn.
    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar, 
         castType.getAsString(), castExpr->getSourceRange());
  } else if (!castExpr->getType()->isScalarType() && 
             !castExpr->getType()->isVectorType()) {
    return Diag(castExpr->getLocStart(), 
                diag::err_typecheck_expect_scalar_operand, 
                castExpr->getType().getAsString(),castExpr->getSourceRange());
  } else if (castExpr->getType()->isVectorType()) {
    if (CheckVectorCast(TyR, castExpr->getType(), castType))
      return true;
  } else if (castType->isVectorType()) {
    if (CheckVectorCast(TyR, castType, castExpr->getType()))
      return true;
  }
  return false;
}

bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
  assert(VectorTy->isVectorType() && "Not a vector type!");
  
  if (Ty->isVectorType() || Ty->isIntegerType()) {
    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
      return Diag(R.getBegin(),
                  Ty->isVectorType() ? 
                  diag::err_invalid_conversion_between_vectors :
                  diag::err_invalid_conversion_between_vector_and_integer,
                  VectorTy.getAsString().c_str(),
                  Ty.getAsString().c_str(), R);
  } else
    return Diag(R.getBegin(),
                diag::err_invalid_conversion_between_vector_and_scalar,
                VectorTy.getAsString().c_str(),
                Ty.getAsString().c_str(), R);
  
  return false;
}

Action::ExprResult Sema::
ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
              SourceLocation RParenLoc, ExprTy *Op) {
  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");

  Expr *castExpr = static_cast<Expr*>(Op);
  QualType castType = QualType::getFromOpaquePtr(Ty);

  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
    return true;
  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
}

/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lex = cond.
inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
  UsualUnaryConversions(cond);
  UsualUnaryConversions(lex);
  UsualUnaryConversions(rex);
  QualType condT = cond->getType();
  QualType lexT = lex->getType();
  QualType rexT = rex->getType();

  // first, check the condition.
  if (!condT->isScalarType()) { // C99 6.5.15p2
    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar, 
         condT.getAsString());
    return QualType();
  }
  
  // Now check the two expressions.
  
  // If both operands have arithmetic type, do the usual arithmetic conversions
  // to find a common type: C99 6.5.15p3,5.
  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
    UsualArithmeticConversions(lex, rex);
    return lex->getType();
  }
  
  // If both operands are the same structure or union type, the result is that
  // type.
  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
    if (const RecordType *RHSRT = rexT->getAsRecordType())
      if (LHSRT->getDecl() == RHSRT->getDecl())
        // "If both the operands have structure or union type, the result has 
        // that type."  This implies that CV qualifiers are dropped.
        return lexT.getUnqualifiedType();
  }
  
  // C99 6.5.15p5: "If both operands have void type, the result has void type."
  // The following || allows only one side to be void (a GCC-ism).
  if (lexT->isVoidType() || rexT->isVoidType()) {
    if (!lexT->isVoidType())
      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void, 
           rex->getSourceRange());
    if (!rexT->isVoidType())
      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
           lex->getSourceRange());
    ImpCastExprToType(lex, Context.VoidTy);
    ImpCastExprToType(rex, Context.VoidTy);
    return Context.VoidTy;
  }
  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
  // the type of the other operand."
  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
       Context.isObjCObjectPointerType(lexT)) &&
      rex->isNullPointerConstant(Context)) {
    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
    return lexT;
  }
  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
       Context.isObjCObjectPointerType(rexT)) &&
      lex->isNullPointerConstant(Context)) {
    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
    return rexT;
  }
  // Handle the case where both operands are pointers before we handle null
  // pointer constants in case both operands are null pointer constants.
  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
      // get the "pointed to" types
      QualType lhptee = LHSPT->getPointeeType();
      QualType rhptee = RHSPT->getPointeeType();

      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
      if (lhptee->isVoidType() &&
          rhptee->isIncompleteOrObjectType()) {
        // Figure out necessary qualifiers (C99 6.5.15p6)
        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
        QualType destType = Context.getPointerType(destPointee);
        ImpCastExprToType(lex, destType); // add qualifiers if necessary
        ImpCastExprToType(rex, destType); // promote to void*
        return destType;
      }
      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
        QualType destType = Context.getPointerType(destPointee);
        ImpCastExprToType(lex, destType); // add qualifiers if necessary
        ImpCastExprToType(rex, destType); // promote to void*
        return destType;
      }

      QualType compositeType = lexT;
      
      // If either type is an Objective-C object type then check
      // compatibility according to Objective-C.
      if (Context.isObjCObjectPointerType(lexT) || 
          Context.isObjCObjectPointerType(rexT)) {
        // If both operands are interfaces and either operand can be
        // assigned to the other, use that type as the composite
        // type. This allows
        //   xxx ? (A*) a : (B*) b
        // where B is a subclass of A.
        //
        // Additionally, as for assignment, if either type is 'id'
        // allow silent coercion. Finally, if the types are
        // incompatible then make sure to use 'id' as the composite
        // type so the result is acceptable for sending messages to.

        // FIXME: This code should not be localized to here. Also this
        // should use a compatible check instead of abusing the
        // canAssignObjCInterfaces code.
        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
        if (LHSIface && RHSIface &&
            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
          compositeType = lexT;
        } else if (LHSIface && RHSIface &&
                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
          compositeType = rexT;
        } else if (Context.isObjCIdType(lhptee) || 
                   Context.isObjCIdType(rhptee)) { 
          // FIXME: This code looks wrong, because isObjCIdType checks
          // the struct but getObjCIdType returns the pointer to
          // struct. This is horrible and should be fixed.
          compositeType = Context.getObjCIdType();
        } else {
          QualType incompatTy = Context.getObjCIdType();
          ImpCastExprToType(lex, incompatTy);
          ImpCastExprToType(rex, incompatTy);
          return incompatTy;          
        }
      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), 
                                             rhptee.getUnqualifiedType())) {
        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
             lexT.getAsString(), rexT.getAsString(),
             lex->getSourceRange(), rex->getSourceRange());
        // In this situation, we assume void* type. No especially good
        // reason, but this is what gcc does, and we do have to pick
        // to get a consistent AST.
        QualType incompatTy = Context.getPointerType(Context.VoidTy);
        ImpCastExprToType(lex, incompatTy);
        ImpCastExprToType(rex, incompatTy);
        return incompatTy;
      }
      // The pointer types are compatible.
      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
      // differently qualified versions of compatible types, the result type is
      // a pointer to an appropriately qualified version of the *composite*
      // type.
      // FIXME: Need to calculate the composite type.
      // FIXME: Need to add qualifiers
      ImpCastExprToType(lex, compositeType);
      ImpCastExprToType(rex, compositeType);
      return compositeType;
    }
  }
  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
  // evaluates to "struct objc_object *" (and is handled above when comparing
  // id with statically typed objects). 
  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {    
    // GCC allows qualified id and any Objective-C type to devolve to
    // id. Currently localizing to here until clear this should be
    // part of ObjCQualifiedIdTypesAreCompatible.
    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
        (lexT->isObjCQualifiedIdType() && 
         Context.isObjCObjectPointerType(rexT)) ||
        (rexT->isObjCQualifiedIdType() &&
         Context.isObjCObjectPointerType(lexT))) {
      // FIXME: This is not the correct composite type. This only
      // happens to work because id can more or less be used anywhere,
      // however this may change the type of method sends.
      // FIXME: gcc adds some type-checking of the arguments and emits
      // (confusing) incompatible comparison warnings in some
      // cases. Investigate.
      QualType compositeType = Context.getObjCIdType();
      ImpCastExprToType(lex, compositeType);
      ImpCastExprToType(rex, compositeType);
      return compositeType;
    }
  }

  // Selection between block pointer types is ok as long as they are the same.
  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
    return lexT;

  // Otherwise, the operands are not compatible.
  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
       lexT.getAsString(), rexT.getAsString(),
       lex->getSourceRange(), rex->getSourceRange());
  return QualType();
}

/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, 
                                            SourceLocation ColonLoc,
                                            ExprTy *Cond, ExprTy *LHS,
                                            ExprTy *RHS) {
  Expr *CondExpr = (Expr *) Cond;
  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;

  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
  // was the condition.
  bool isLHSNull = LHSExpr == 0;
  if (isLHSNull)
    LHSExpr = CondExpr;
  
  QualType result = CheckConditionalOperands(CondExpr, LHSExpr, 
                                             RHSExpr, QuestionLoc);
  if (result.isNull())
    return true;
  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
                                 RHSExpr, result);
}


// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this 
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType 
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
  QualType lhptee, rhptee;
  
  // get the "pointed to" type (ignoring qualifiers at the top level)
  lhptee = lhsType->getAsPointerType()->getPointeeType();
  rhptee = rhsType->getAsPointerType()->getPointeeType();
  
  // make sure we operate on the canonical type
  lhptee = Context.getCanonicalType(lhptee);
  rhptee = Context.getCanonicalType(rhptee);

  AssignConvertType ConvTy = Compatible;
  
  // C99 6.5.16.1p1: This following citation is common to constraints 
  // 3 & 4 (below). ...and the type *pointed to* by the left has all the 
  // qualifiers of the type *pointed to* by the right; 
  // FIXME: Handle ASQualType
  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
    ConvTy = CompatiblePointerDiscardsQualifiers;

  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or 
  // incomplete type and the other is a pointer to a qualified or unqualified 
  // version of void...
  if (lhptee->isVoidType()) {
    if (rhptee->isIncompleteOrObjectType())
      return ConvTy;
    
    // As an extension, we allow cast to/from void* to function pointer.
    assert(rhptee->isFunctionType());
    return FunctionVoidPointer;
  }
  
  if (rhptee->isVoidType()) {
    if (lhptee->isIncompleteOrObjectType())
      return ConvTy;

    // As an extension, we allow cast to/from void* to function pointer.
    assert(lhptee->isFunctionType());
    return FunctionVoidPointer;
  }

  // Check for ObjC interfaces
  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
  if (LHSIface && RHSIface &&
      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
    return ConvTy;

  // ID acts sort of like void* for ObjC interfaces
  if (LHSIface && Context.isObjCIdType(rhptee))
    return ConvTy;
  if (RHSIface && Context.isObjCIdType(lhptee))
    return ConvTy;

  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or 
  // unqualified versions of compatible types, ...
  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), 
                                  rhptee.getUnqualifiedType()))
    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
  return ConvTy;
}

/// CheckBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
Sema::AssignConvertType 
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, 
                                          QualType rhsType) {
  QualType lhptee, rhptee;
  
  // get the "pointed to" type (ignoring qualifiers at the top level)
  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
  rhptee = rhsType->getAsBlockPointerType()->getPointeeType(); 
  
  // make sure we operate on the canonical type
  lhptee = Context.getCanonicalType(lhptee);
  rhptee = Context.getCanonicalType(rhptee);
  
  AssignConvertType ConvTy = Compatible;
  
  // For blocks we enforce that qualifiers are identical.
  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
    ConvTy = CompatiblePointerDiscardsQualifiers;
    
  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
    return IncompatibleBlockPointer; 
  return ConvTy;
}

/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently 
/// has code to accommodate several GCC extensions when type checking 
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
///  int a, *pint;
///  short *pshort;
///  struct foo *pfoo;
///
///  pint = pshort; // warning: assignment from incompatible pointer type
///  a = pint; // warning: assignment makes integer from pointer without a cast
///  pint = a; // warning: assignment makes pointer from integer without a cast
///  pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates. 
///
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
  // Get canonical types.  We're not formatting these types, just comparing
  // them.
  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();

  if (lhsType == rhsType)
    return Compatible; // Common case: fast path an exact match.

  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
    if (Context.typesAreCompatible(lhsType, rhsType))
      return Compatible;
    return Incompatible;
  }

  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
      return Compatible;
    // Relax integer conversions like we do for pointers below.
    if (rhsType->isIntegerType())
      return IntToPointer;
    if (lhsType->isIntegerType())
      return PointerToInt;
    return IncompatibleObjCQualifiedId;
  }

  if (lhsType->isVectorType() || rhsType->isVectorType()) {
    // For ExtVector, allow vector splats; float -> <n x float>
    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
      if (LV->getElementType() == rhsType)
        return Compatible;

    // If we are allowing lax vector conversions, and LHS and RHS are both
    // vectors, the total size only needs to be the same. This is a bitcast; 
    // no bits are changed but the result type is different.
    if (getLangOptions().LaxVectorConversions &&
        lhsType->isVectorType() && rhsType->isVectorType()) {
      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
        return Compatible;
    }
    return Incompatible;
  }      

  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
    return Compatible;

  if (isa<PointerType>(lhsType)) {
    if (rhsType->isIntegerType())
      return IntToPointer;

    if (isa<PointerType>(rhsType))
      return CheckPointerTypesForAssignment(lhsType, rhsType);
      
    if (rhsType->getAsBlockPointerType()) {
      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
        return BlockVoidPointer;

      // Treat block pointers as objects.
      if (getLangOptions().ObjC1 &&
          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
        return Compatible;
    }
    return Incompatible;
  }

  if (isa<BlockPointerType>(lhsType)) {
    if (rhsType->isIntegerType())
      return IntToPointer;
    
    // Treat block pointers as objects.
    if (getLangOptions().ObjC1 &&
        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
      return Compatible;

    if (rhsType->isBlockPointerType())
      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
      
    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
      if (RHSPT->getPointeeType()->isVoidType())
        return BlockVoidPointer;
    }
    return Incompatible;
  }

  if (isa<PointerType>(rhsType)) {
    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
    if (lhsType == Context.BoolTy)
      return Compatible;

    if (lhsType->isIntegerType())
      return PointerToInt;

    if (isa<PointerType>(lhsType)) 
      return CheckPointerTypesForAssignment(lhsType, rhsType);
      
    if (isa<BlockPointerType>(lhsType) && 
        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
      return BlockVoidPointer;
    return Incompatible;
  }

  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
    if (Context.typesAreCompatible(lhsType, rhsType))
      return Compatible;
  }
  return Incompatible;
}

Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
  if (getLangOptions().CPlusPlus) {
    if (!lhsType->isRecordType()) {
      // C++ 5.17p3: If the left operand is not of class type, the
      // expression is implicitly converted (C++ 4) to the
      // cv-unqualified type of the left operand.
      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
        return Incompatible;
      else
        return Compatible;
    }

    // FIXME: Currently, we fall through and treat C++ classes like C
    // structures.
  }

  // C99 6.5.16.1p1: the left operand is a pointer and the right is
  // a null pointer constant.
  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
       lhsType->isBlockPointerType()) 
      && rExpr->isNullPointerConstant(Context)) {
    ImpCastExprToType(rExpr, lhsType);
    return Compatible;
  }
  
  // We don't allow conversion of non-null-pointer constants to integers.
  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
    return IntToBlockPointer;

  // This check seems unnatural, however it is necessary to ensure the proper
  // conversion of functions/arrays. If the conversion were done for all
  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
  // expressions that surpress this implicit conversion (&, sizeof).
  //
  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
  // are better understood.
  if (!lhsType->isReferenceType())
    DefaultFunctionArrayConversion(rExpr);

  Sema::AssignConvertType result =
    CheckAssignmentConstraints(lhsType, rExpr->getType());
  
  // C99 6.5.16.1p2: The value of the right operand is converted to the
  // type of the assignment expression.
  if (rExpr->getType() != lhsType)
    ImpCastExprToType(rExpr, lhsType);
  return result;
}

Sema::AssignConvertType
Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
  return CheckAssignmentConstraints(lhsType, rhsType);
}

QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
  Diag(loc, diag::err_typecheck_invalid_operands, 
       lex->getType().getAsString(), rex->getType().getAsString(),
       lex->getSourceRange(), rex->getSourceRange());
  return QualType();
}

inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex, 
                                                              Expr *&rex) {
  // For conversion purposes, we ignore any qualifiers. 
  // For example, "const float" and "float" are equivalent.
  QualType lhsType =
    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
  QualType rhsType =
    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
  
  // If the vector types are identical, return.
  if (lhsType == rhsType)
    return lhsType;

  // Handle the case of a vector & extvector type of the same size and element
  // type.  It would be nice if we only had one vector type someday.
  if (getLangOptions().LaxVectorConversions)
    if (const VectorType *LV = lhsType->getAsVectorType())
      if (const VectorType *RV = rhsType->getAsVectorType())
        if (LV->getElementType() == RV->getElementType() &&
            LV->getNumElements() == RV->getNumElements())
          return lhsType->isExtVectorType() ? lhsType : rhsType;

  // If the lhs is an extended vector and the rhs is a scalar of the same type
  // or a literal, promote the rhs to the vector type.
  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
    QualType eltType = V->getElementType();
    
    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) || 
        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
      ImpCastExprToType(rex, lhsType);
      return lhsType;
    }
  }

  // If the rhs is an extended vector and the lhs is a scalar of the same type,
  // promote the lhs to the vector type.
  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
    QualType eltType = V->getElementType();

    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) || 
        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
      ImpCastExprToType(lex, rhsType);
      return rhsType;
    }
  }

  // You cannot convert between vector values of different size.
  Diag(loc, diag::err_typecheck_vector_not_convertable, 
       lex->getType().getAsString(), rex->getType().getAsString(),
       lex->getSourceRange(), rex->getSourceRange());
  return QualType();
}    

inline QualType Sema::CheckMultiplyDivideOperands(
  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) 
{
  QualType lhsType = lex->getType(), rhsType = rex->getType();

  if (lhsType->isVectorType() || rhsType->isVectorType())
    return CheckVectorOperands(loc, lex, rex);
    
  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
  
  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
    return compType;
  return InvalidOperands(loc, lex, rex);
}

inline QualType Sema::CheckRemainderOperands(
  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) 
{
  QualType lhsType = lex->getType(), rhsType = rex->getType();

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
  
  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
    return compType;
  return InvalidOperands(loc, lex, rex);
}

inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) 
{
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(loc, lex, rex);

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);

  // handle the common case first (both operands are arithmetic).
  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
    return compType;

  // Put any potential pointer into PExp
  Expr* PExp = lex, *IExp = rex;
  if (IExp->getType()->isPointerType())
    std::swap(PExp, IExp);

  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
    if (IExp->getType()->isIntegerType()) {
      // Check for arithmetic on pointers to incomplete types
      if (!PTy->getPointeeType()->isObjectType()) {
        if (PTy->getPointeeType()->isVoidType()) {
          Diag(loc, diag::ext_gnu_void_ptr, 
               lex->getSourceRange(), rex->getSourceRange());
        } else {
          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
               lex->getType().getAsString(), lex->getSourceRange());
          return QualType();
        }
      }
      return PExp->getType();
    }
  }

  return InvalidOperands(loc, lex, rex);
}

// C99 6.5.6
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
                                        SourceLocation loc, bool isCompAssign) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(loc, lex, rex);
    
  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
  
  // Enforce type constraints: C99 6.5.6p3.
  
  // Handle the common case first (both operands are arithmetic).
  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
    return compType;
  
  // Either ptr - int   or   ptr - ptr.
  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
    QualType lpointee = LHSPTy->getPointeeType();
    
    // The LHS must be an object type, not incomplete, function, etc.
    if (!lpointee->isObjectType()) {
      // Handle the GNU void* extension.
      if (lpointee->isVoidType()) {
        Diag(loc, diag::ext_gnu_void_ptr, 
             lex->getSourceRange(), rex->getSourceRange());
      } else {
        Diag(loc, diag::err_typecheck_sub_ptr_object,
             lex->getType().getAsString(), lex->getSourceRange());
        return QualType();
      }
    }

    // The result type of a pointer-int computation is the pointer type.
    if (rex->getType()->isIntegerType())
      return lex->getType();
    
    // Handle pointer-pointer subtractions.
    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
      QualType rpointee = RHSPTy->getPointeeType();
      
      // RHS must be an object type, unless void (GNU).
      if (!rpointee->isObjectType()) {
        // Handle the GNU void* extension.
        if (rpointee->isVoidType()) {
          if (!lpointee->isVoidType())
            Diag(loc, diag::ext_gnu_void_ptr, 
                 lex->getSourceRange(), rex->getSourceRange());
        } else {
          Diag(loc, diag::err_typecheck_sub_ptr_object,
               rex->getType().getAsString(), rex->getSourceRange());
          return QualType();
        }
      }
      
      // Pointee types must be compatible.
      if (!Context.typesAreCompatible(
              Context.getCanonicalType(lpointee).getUnqualifiedType(), 
              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
             lex->getType().getAsString(), rex->getType().getAsString(),
             lex->getSourceRange(), rex->getSourceRange());
        return QualType();
      }
      
      return Context.getPointerDiffType();
    }
  }
  
  return InvalidOperands(loc, lex, rex);
}

// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
                                  bool isCompAssign) {
  // C99 6.5.7p2: Each of the operands shall have integer type.
  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
    return InvalidOperands(loc, lex, rex);
  
  // Shifts don't perform usual arithmetic conversions, they just do integer
  // promotions on each operand. C99 6.5.7p3
  if (!isCompAssign)
    UsualUnaryConversions(lex);
  UsualUnaryConversions(rex);
  
  // "The type of the result is that of the promoted left operand."
  return lex->getType();
}

static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
                                        ASTContext& Context) {
  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
  // ID acts sort of like void* for ObjC interfaces
  if (LHSIface && Context.isObjCIdType(RHS))
    return true;
  if (RHSIface && Context.isObjCIdType(LHS))
    return true;
  if (!LHSIface || !RHSIface)
    return false;
  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
}

// C99 6.5.8
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
                                    bool isRelational) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
  
  // C99 6.5.8p3 / C99 6.5.9p4
  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
    UsualArithmeticConversions(lex, rex);
  else {
    UsualUnaryConversions(lex);
    UsualUnaryConversions(rex);
  }
  QualType lType = lex->getType();
  QualType rType = rex->getType();
  
  // For non-floating point types, check for self-comparisons of the form
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
  // often indicate logic errors in the program.
  if (!lType->isFloatingType()) {
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
        if (DRL->getDecl() == DRR->getDecl())
          Diag(loc, diag::warn_selfcomparison);      
  }
  
  if (isRelational) {
    if (lType->isRealType() && rType->isRealType())
      return Context.IntTy;
  } else {
    // Check for comparisons of floating point operands using != and ==.
    if (lType->isFloatingType()) {
      assert (rType->isFloatingType());
      CheckFloatComparison(loc,lex,rex);
    }
    
    if (lType->isArithmeticType() && rType->isArithmeticType())
      return Context.IntTy;
  }
  
  bool LHSIsNull = lex->isNullPointerConstant(Context);
  bool RHSIsNull = rex->isNullPointerConstant(Context);
  
  // All of the following pointer related warnings are GCC extensions, except
  // when handling null pointer constants. One day, we can consider making them
  // errors (when -pedantic-errors is enabled).
  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
    QualType LCanPointeeTy =
      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
    QualType RCanPointeeTy =
      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
    
    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
                                    RCanPointeeTy.getUnqualifiedType()) &&
        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    }
    ImpCastExprToType(rex, lType); // promote the pointer to pointer
    return Context.IntTy;
  }
  // Handle block pointer types.
  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
    
    if (!LHSIsNull && !RHSIsNull &&
        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    }
    ImpCastExprToType(rex, lType); // promote the pointer to pointer
    return Context.IntTy;
  }
  // Allow block pointers to be compared with null pointer constants.
  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
      (lType->isPointerType() && rType->isBlockPointerType())) {
    if (!LHSIsNull && !RHSIsNull) {
      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    }
    ImpCastExprToType(rex, lType); // promote the pointer to pointer
    return Context.IntTy;
  }

  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
    if ((lType->isPointerType() || rType->isPointerType()) &&
        !Context.typesAreCompatible(lType, rType)) {
      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
      ImpCastExprToType(rex, lType);
      return Context.IntTy;
    }
    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
      ImpCastExprToType(rex, lType);
      return Context.IntTy;
    } else {
      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
        Diag(loc, diag::warn_incompatible_qualified_id_operands, 
             lType.getAsString(), rType.getAsString(),
             lex->getSourceRange(), rex->getSourceRange());
        ImpCastExprToType(rex, lType);
        return Context.IntTy;
      }
    }
  }
  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) && 
       rType->isIntegerType()) {
    if (!RHSIsNull)
      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    ImpCastExprToType(rex, lType); // promote the integer to pointer
    return Context.IntTy;
  }
  if (lType->isIntegerType() && 
      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
    if (!LHSIsNull)
      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    ImpCastExprToType(lex, rType); // promote the integer to pointer
    return Context.IntTy;
  }
  // Handle block pointers.
  if (lType->isBlockPointerType() && rType->isIntegerType()) {
    if (!RHSIsNull)
      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    ImpCastExprToType(rex, lType); // promote the integer to pointer
    return Context.IntTy;
  }
  if (lType->isIntegerType() && rType->isBlockPointerType()) {
    if (!LHSIsNull)
      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
           lType.getAsString(), rType.getAsString(),
           lex->getSourceRange(), rex->getSourceRange());
    ImpCastExprToType(lex, rType); // promote the integer to pointer
    return Context.IntTy;
  }
  return InvalidOperands(loc, lex, rex);
}

/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types.  Instead of producing an IntTy result, 
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
                                          SourceLocation loc,
                                          bool isRelational) {
  // Check to make sure we're operating on vectors of the same type and width,
  // Allowing one side to be a scalar of element type.
  QualType vType = CheckVectorOperands(loc, lex, rex);
  if (vType.isNull())
    return vType;
  
  QualType lType = lex->getType();
  QualType rType = rex->getType();
  
  // For non-floating point types, check for self-comparisons of the form
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
  // often indicate logic errors in the program.
  if (!lType->isFloatingType()) {
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
        if (DRL->getDecl() == DRR->getDecl())
          Diag(loc, diag::warn_selfcomparison);      
  }
  
  // Check for comparisons of floating point operands using != and ==.
  if (!isRelational && lType->isFloatingType()) {
    assert (rType->isFloatingType());
    CheckFloatComparison(loc,lex,rex);
  }
  
  // Return the type for the comparison, which is the same as vector type for
  // integer vectors, or an integer type of identical size and number of
  // elements for floating point vectors.
  if (lType->isIntegerType())
    return lType;
  
  const VectorType *VTy = lType->getAsVectorType();

  // FIXME: need to deal with non-32b int / non-64b long long
  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
  if (TypeSize == 32) {
    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
  }
  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}

inline QualType Sema::CheckBitwiseOperands(
  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) 
{
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(loc, lex, rex);

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
  
  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
    return compType;
  return InvalidOperands(loc, lex, rex);
}

inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
  Expr *&lex, Expr *&rex, SourceLocation loc) 
{
  UsualUnaryConversions(lex);
  UsualUnaryConversions(rex);
  
  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
    return Context.IntTy;
  return InvalidOperands(loc, lex, rex);
}

inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType) 
{
  QualType lhsType = lex->getType();
  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context); 

  switch (mlval) { // C99 6.5.16p2
  case Expr::MLV_Valid: 
    break;
  case Expr::MLV_ConstQualified:
    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
    return QualType();
  case Expr::MLV_ArrayType: 
    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
         lhsType.getAsString(), lex->getSourceRange());
    return QualType(); 
  case Expr::MLV_NotObjectType: 
    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
         lhsType.getAsString(), lex->getSourceRange());
    return QualType();
  case Expr::MLV_InvalidExpression:
    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
         lex->getSourceRange());
    return QualType();
  case Expr::MLV_IncompleteType:
  case Expr::MLV_IncompleteVoidType:
    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
         lhsType.getAsString(), lex->getSourceRange());
    return QualType();
  case Expr::MLV_DuplicateVectorComponents:
    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
         lex->getSourceRange());
    return QualType();
  case Expr::MLV_NotBlockQualified:
    Diag(loc, diag::err_block_decl_ref_not_modifiable_lvalue,
         lex->getSourceRange());
    return QualType();
  }

  AssignConvertType ConvTy;
  if (compoundType.isNull()) {
    // Simple assignment "x = y".
    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
    
    // If the RHS is a unary plus or minus, check to see if they = and + are
    // right next to each other.  If so, the user may have typo'd "x =+ 4"
    // instead of "x += 4".
    Expr *RHSCheck = rex;
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
      RHSCheck = ICE->getSubExpr();
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
      if ((UO->getOpcode() == UnaryOperator::Plus ||
           UO->getOpcode() == UnaryOperator::Minus) &&
          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
          // Only if the two operators are exactly adjacent.
          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
        Diag(loc, diag::warn_not_compound_assign,
             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
    }
  } else {
    // Compound assignment "x += y"
    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
  }

  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
                               rex, "assigning"))
    return QualType();
  
  // C99 6.5.16p3: The type of an assignment expression is the type of the
  // left operand unless the left operand has qualified type, in which case
  // it is the unqualified version of the type of the left operand. 
  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
  // is converted to the type of the assignment expression (above).
  // C++ 5.17p1: the type of the assignment expression is that of its left
  // oprdu.
  return lhsType.getUnqualifiedType();
}

inline QualType Sema::CheckCommaOperands( // C99 6.5.17
  Expr *&lex, Expr *&rex, SourceLocation loc) {
  
  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
  DefaultFunctionArrayConversion(rex);
  return rex->getType();
}

/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
  QualType resType = op->getType();
  assert(!resType.isNull() && "no type for increment/decrement expression");

  // C99 6.5.2.4p1: We allow complex as a GCC extension.
  if (const PointerType *pt = resType->getAsPointerType()) {
    if (pt->getPointeeType()->isVoidType()) {
      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
    } else if (!pt->getPointeeType()->isObjectType()) {
      // C99 6.5.2.4p2, 6.5.6p2
      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
           resType.getAsString(), op->getSourceRange());
      return QualType();
    }
  } else if (!resType->isRealType()) {
    if (resType->isComplexType()) 
      // C99 does not support ++/-- on complex types.
      Diag(OpLoc, diag::ext_integer_increment_complex,
           resType.getAsString(), op->getSourceRange());
    else {
      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
           resType.getAsString(), op->getSourceRange());
      return QualType();
    }
  }
  // At this point, we know we have a real, complex or pointer type. 
  // Now make sure the operand is a modifiable lvalue.
  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
  if (mlval != Expr::MLV_Valid) {
    // FIXME: emit a more precise diagnostic...
    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
         op->getSourceRange());
    return QualType();
  }
  return resType;
}

/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
///  - &(x) => x
///  - &*****f => f for f a function designator.
///  - &s.xx => s
///  - &s.zz[1].yy -> s, if zz is an array
///  - *(x + 1) -> x, if x is an array
///  - &"123"[2] -> 0
///  - & __real__ x -> x
static NamedDecl *getPrimaryDecl(Expr *E) {
  switch (E->getStmtClass()) {
  case Stmt::DeclRefExprClass:
    return cast<DeclRefExpr>(E)->getDecl();
  case Stmt::MemberExprClass:
    // Fields cannot be declared with a 'register' storage class.
    // &X->f is always ok, even if X is declared register.
    if (cast<MemberExpr>(E)->isArrow())
      return 0;
    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
  case Stmt::ArraySubscriptExprClass: {
    // &X[4] and &4[X] refers to X if X is not a pointer.
  
    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
    if (!VD || VD->getType()->isPointerType())
      return 0;
    else
      return VD;
  }
  case Stmt::UnaryOperatorClass: {
    UnaryOperator *UO = cast<UnaryOperator>(E);
    
    switch(UO->getOpcode()) {
    case UnaryOperator::Deref: {
      // *(X + 1) refers to X if X is not a pointer.
      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
        ValueDecl *VD = dyn_cast<ValueDecl>(D);
        if (!VD || VD->getType()->isPointerType())
          return 0;
        return VD;
      }
      return 0;
    }
    case UnaryOperator::Real:
    case UnaryOperator::Imag:
    case UnaryOperator::Extension:
      return getPrimaryDecl(UO->getSubExpr());
    default:
      return 0;
    }
  }
  case Stmt::BinaryOperatorClass: {
    BinaryOperator *BO = cast<BinaryOperator>(E);

    // Handle cases involving pointer arithmetic. The result of an
    // Assign or AddAssign is not an lvalue so they can be ignored.

    // (x + n) or (n + x) => x
    if (BO->getOpcode() == BinaryOperator::Add) {
      if (BO->getLHS()->getType()->isPointerType()) {
        return getPrimaryDecl(BO->getLHS());
      } else if (BO->getRHS()->getType()->isPointerType()) {
        return getPrimaryDecl(BO->getRHS());
      }
    }

    return 0;
  }
  case Stmt::ParenExprClass:
    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
  case Stmt::ImplicitCastExprClass:
    // &X[4] when X is an array, has an implicit cast from array to pointer.
    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
  default:
    return 0;
  }
}

/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the 
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the & 
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
  if (getLangOptions().C99) {
    // Implement C99-only parts of addressof rules.
    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
      if (uOp->getOpcode() == UnaryOperator::Deref)
        // Per C99 6.5.3.2, the address of a deref always returns a valid result
        // (assuming the deref expression is valid).
        return uOp->getSubExpr()->getType();
    }
    // Technically, there should be a check for array subscript
    // expressions here, but the result of one is always an lvalue anyway.
  }
  NamedDecl *dcl = getPrimaryDecl(op);
  Expr::isLvalueResult lval = op->isLvalue(Context);
  
  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
      // FIXME: emit more specific diag...
      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof, 
           op->getSourceRange());
      return QualType();
    }
  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
    if (MemExpr->getMemberDecl()->isBitField()) {
      Diag(OpLoc, diag::err_typecheck_address_of, 
           std::string("bit-field"), op->getSourceRange());
      return QualType();
    }
  // Check for Apple extension for accessing vector components.
  } else if (isa<ArraySubscriptExpr>(op) &&
           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
    Diag(OpLoc, diag::err_typecheck_address_of, 
         std::string("vector"), op->getSourceRange());
    return QualType();
  } else if (dcl) { // C99 6.5.3.2p1
    // We have an lvalue with a decl. Make sure the decl is not declared 
    // with the register storage-class specifier.
    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
      if (vd->getStorageClass() == VarDecl::Register) {
        Diag(OpLoc, diag::err_typecheck_address_of, 
             std::string("register variable"), op->getSourceRange());
        return QualType();
      }
    } else 
      assert(0 && "Unknown/unexpected decl type");
  }
  
  // If the operand has type "type", the result has type "pointer to type".
  return Context.getPointerType(op->getType());
}

QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
  UsualUnaryConversions(op);
  QualType qType = op->getType();
  
  if (const PointerType *PT = qType->getAsPointerType()) {
    // Note that per both C89 and C99, this is always legal, even
    // if ptype is an incomplete type or void.
    // It would be possible to warn about dereferencing a
    // void pointer, but it's completely well-defined,
    // and such a warning is unlikely to catch any mistakes.
    return PT->getPointeeType();
  }
  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer, 
       qType.getAsString(), op->getSourceRange());
  return QualType();
}

static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
  tok::TokenKind Kind) {
  BinaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown binop!");
  case tok::star:                 Opc = BinaryOperator::Mul; break;
  case tok::slash:                Opc = BinaryOperator::Div; break;
  case tok::percent:              Opc = BinaryOperator::Rem; break;
  case tok::plus:                 Opc = BinaryOperator::Add; break;
  case tok::minus:                Opc = BinaryOperator::Sub; break;
  case tok::lessless:             Opc = BinaryOperator::Shl; break;
  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
  case tok::lessequal:            Opc = BinaryOperator::LE; break;
  case tok::less:                 Opc = BinaryOperator::LT; break;
  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
  case tok::greater:              Opc = BinaryOperator::GT; break;
  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
  case tok::amp:                  Opc = BinaryOperator::And; break;
  case tok::caret:                Opc = BinaryOperator::Xor; break;
  case tok::pipe:                 Opc = BinaryOperator::Or; break;
  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
  case tok::equal:                Opc = BinaryOperator::Assign; break;
  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
  case tok::comma:                Opc = BinaryOperator::Comma; break;
  }
  return Opc;
}

static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
  tok::TokenKind Kind) {
  UnaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown unary op!");
  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
  case tok::star:         Opc = UnaryOperator::Deref; break;
  case tok::plus:         Opc = UnaryOperator::Plus; break;
  case tok::minus:        Opc = UnaryOperator::Minus; break;
  case tok::tilde:        Opc = UnaryOperator::Not; break;
  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
  case tok::kw___real:    Opc = UnaryOperator::Real; break;
  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
  }
  return Opc;
}

// Binary Operators.  'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
                                    ExprTy *LHS, ExprTy *RHS) {
  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;

  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
  assert((rhs != 0) && "ActOnBinOp(): missing right expression");

  QualType ResultTy;  // Result type of the binary operator.
  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
  
  switch (Opc) {
  default:
    assert(0 && "Unknown binary expr!");
  case BinaryOperator::Assign:
    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
    break;
  case BinaryOperator::Mul: 
  case BinaryOperator::Div:
    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::Rem:
    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::Add:
    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::Sub:
    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::Shl: 
  case BinaryOperator::Shr:
    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::LE:
  case BinaryOperator::LT:
  case BinaryOperator::GE:
  case BinaryOperator::GT:
    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
    break;
  case BinaryOperator::EQ:
  case BinaryOperator::NE:
    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
    break;
  case BinaryOperator::And:
  case BinaryOperator::Xor:
  case BinaryOperator::Or:
    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::LAnd:
  case BinaryOperator::LOr:
    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
    break;
  case BinaryOperator::MulAssign:
  case BinaryOperator::DivAssign:
    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::RemAssign:
    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::AddAssign:
    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::SubAssign:
    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::ShlAssign:
  case BinaryOperator::ShrAssign:
    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::AndAssign:
  case BinaryOperator::XorAssign:
  case BinaryOperator::OrAssign:
    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
    if (!CompTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
    break;
  case BinaryOperator::Comma:
    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
    break;
  }
  if (ResultTy.isNull())
    return true;
  if (CompTy.isNull())
    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
  else
    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
}

// Unary Operators.  'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
                                      ExprTy *input) {
  Expr *Input = (Expr*)input;
  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
  QualType resultType;
  switch (Opc) {
  default:
    assert(0 && "Unimplemented unary expr!");
  case UnaryOperator::PreInc:
  case UnaryOperator::PreDec:
    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
    break;
  case UnaryOperator::AddrOf: 
    resultType = CheckAddressOfOperand(Input, OpLoc);
    break;
  case UnaryOperator::Deref: 
    DefaultFunctionArrayConversion(Input);
    resultType = CheckIndirectionOperand(Input, OpLoc);
    break;
  case UnaryOperator::Plus:
  case UnaryOperator::Minus:
    UsualUnaryConversions(Input);
    resultType = Input->getType();
    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
      return Diag(OpLoc, diag::err_typecheck_unary_expr, 
                  resultType.getAsString());
    break;
  case UnaryOperator::Not: // bitwise complement
    UsualUnaryConversions(Input);
    resultType = Input->getType();
    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
    if (resultType->isComplexType() || resultType->isComplexIntegerType())
      // C99 does not support '~' for complex conjugation.
      Diag(OpLoc, diag::ext_integer_complement_complex,
           resultType.getAsString(), Input->getSourceRange());
    else if (!resultType->isIntegerType())
      return Diag(OpLoc, diag::err_typecheck_unary_expr,
                  resultType.getAsString(), Input->getSourceRange());
    break;
  case UnaryOperator::LNot: // logical negation
    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
    DefaultFunctionArrayConversion(Input);
    resultType = Input->getType();
    if (!resultType->isScalarType()) // C99 6.5.3.3p1
      return Diag(OpLoc, diag::err_typecheck_unary_expr,
                  resultType.getAsString());
    // LNot always has type int. C99 6.5.3.3p5.
    resultType = Context.IntTy;
    break;
  case UnaryOperator::SizeOf:
    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
                                           Input->getSourceRange(), true);
    break;
  case UnaryOperator::AlignOf:
    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
                                           Input->getSourceRange(), false);
    break;
  case UnaryOperator::Real:
  case UnaryOperator::Imag:
    resultType = CheckRealImagOperand(Input, OpLoc);
    break;
  case UnaryOperator::Extension:
    resultType = Input->getType();
    break;
  }
  if (resultType.isNull())
    return true;
  return new UnaryOperator(Input, Opc, resultType, OpLoc);
}

/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, 
                                      SourceLocation LabLoc,
                                      IdentifierInfo *LabelII) {
  // Look up the record for this label identifier.
  LabelStmt *&LabelDecl = LabelMap[LabelII];
  
  // If we haven't seen this label yet, create a forward reference. It
  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
  if (LabelDecl == 0)
    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
  
  // Create the AST node.  The address of a label always has type 'void*'.
  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
                           Context.getPointerType(Context.VoidTy));
}

Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
                                     SourceLocation RPLoc) { // "({..})"
  Stmt *SubStmt = static_cast<Stmt*>(substmt);
  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);

  // FIXME: there are a variety of strange constraints to enforce here, for
  // example, it is not possible to goto into a stmt expression apparently.
  // More semantic analysis is needed.
  
  // FIXME: the last statement in the compount stmt has its value used.  We
  // should not warn about it being unused.

  // If there are sub stmts in the compound stmt, take the type of the last one
  // as the type of the stmtexpr.
  QualType Ty = Context.VoidTy;
  
  if (!Compound->body_empty()) {
    Stmt *LastStmt = Compound->body_back();
    // If LastStmt is a label, skip down through into the body.
    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
      LastStmt = Label->getSubStmt();
    
    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
      Ty = LastExpr->getType();
  }
  
  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
}

Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
                                            SourceLocation TypeLoc,
                                            TypeTy *argty,
                                            OffsetOfComponent *CompPtr,
                                            unsigned NumComponents,
                                            SourceLocation RPLoc) {
  QualType ArgTy = QualType::getFromOpaquePtr(argty);
  assert(!ArgTy.isNull() && "Missing type argument!");
  
  // We must have at least one component that refers to the type, and the first
  // one is known to be a field designator.  Verify that the ArgTy represents
  // a struct/union/class.
  if (!ArgTy->isRecordType())
    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
  
  // Otherwise, create a compound literal expression as the base, and
  // iteratively process the offsetof designators.
  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
  
  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
  // GCC extension, diagnose them.
  if (NumComponents != 1)
    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
  
  for (unsigned i = 0; i != NumComponents; ++i) {
    const OffsetOfComponent &OC = CompPtr[i];
    if (OC.isBrackets) {
      // Offset of an array sub-field.  TODO: Should we allow vector elements?
      const ArrayType *AT = Context.getAsArrayType(Res->getType());
      if (!AT) {
        delete Res;
        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
                    Res->getType().getAsString());
      }
      
      // FIXME: C++: Verify that operator[] isn't overloaded.

      // C99 6.5.2.1p1
      Expr *Idx = static_cast<Expr*>(OC.U.E);
      if (!Idx->getType()->isIntegerType())
        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
                    Idx->getSourceRange());
      
      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
      continue;
    }
    
    const RecordType *RC = Res->getType()->getAsRecordType();
    if (!RC) {
      delete Res;
      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
                  Res->getType().getAsString());
    }
      
    // Get the decl corresponding to this.
    RecordDecl *RD = RC->getDecl();
    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
    if (!MemberDecl)
      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
                  OC.U.IdentInfo->getName(),
                  SourceRange(OC.LocStart, OC.LocEnd));
    
    // FIXME: C++: Verify that MemberDecl isn't a static field.
    // FIXME: Verify that MemberDecl isn't a bitfield.
    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
    // matter here.
    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
  }
  
  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
                           BuiltinLoc);
}


Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, 
                                                TypeTy *arg1, TypeTy *arg2,
                                                SourceLocation RPLoc) {
  QualType argT1 = QualType::getFromOpaquePtr(arg1);
  QualType argT2 = QualType::getFromOpaquePtr(arg2);
  
  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
  
  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
}

Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, 
                                       ExprTy *expr1, ExprTy *expr2,
                                       SourceLocation RPLoc) {
  Expr *CondExpr = static_cast<Expr*>(cond);
  Expr *LHSExpr = static_cast<Expr*>(expr1);
  Expr *RHSExpr = static_cast<Expr*>(expr2);
  
  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");

  // The conditional expression is required to be a constant expression.
  llvm::APSInt condEval(32);
  SourceLocation ExpLoc;
  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
                 CondExpr->getSourceRange());

  // If the condition is > zero, then the AST type is the same as the LSHExpr.
  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : 
                                               RHSExpr->getType();
  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
}

//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//

/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
  // Analyze block parameters.
  BlockSemaInfo *BSI = new BlockSemaInfo();
  
  // Add BSI to CurBlock.
  BSI->PrevBlockInfo = CurBlock;
  CurBlock = BSI;
  
  BSI->ReturnType = 0;
  BSI->TheScope = BlockScope;
  
  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
  PushDeclContext(BSI->TheDecl);
}

void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
  // Analyze arguments to block.
  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
         "Not a function declarator!");
  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
  
  CurBlock->hasPrototype = FTI.hasPrototype;
  CurBlock->isVariadic = true;
  
  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
  // no arguments, not a function that takes a single void argument.
  if (FTI.hasPrototype &&
      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
    // empty arg list, don't push any params.
    CurBlock->isVariadic = false;
  } else if (FTI.hasPrototype) {
    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
    CurBlock->isVariadic = FTI.isVariadic;
  }
  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
  
  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
    // If this has an identifier, add it to the scope stack.
    if ((*AI)->getIdentifier())
      PushOnScopeChains(*AI, CurBlock->TheScope);
}

/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
  // Ensure that CurBlock is deleted.
  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
  
  // Pop off CurBlock, handle nested blocks.
  CurBlock = CurBlock->PrevBlockInfo;
  
  // FIXME: Delete the ParmVarDecl objects as well???
  
}

/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed.  ^(int x){...}
Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
                                          Scope *CurScope) {
  // Ensure that CurBlock is deleted.
  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));

  PopDeclContext();

  // Pop off CurBlock, handle nested blocks.
  CurBlock = CurBlock->PrevBlockInfo;
  
  QualType RetTy = Context.VoidTy;
  if (BSI->ReturnType)
    RetTy = QualType(BSI->ReturnType, 0);
  
  llvm::SmallVector<QualType, 8> ArgTypes;
  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
    ArgTypes.push_back(BSI->Params[i]->getType());
  
  QualType BlockTy;
  if (!BSI->hasPrototype)
    BlockTy = Context.getFunctionTypeNoProto(RetTy);
  else
    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
                                      BSI->isVariadic);
  
  BlockTy = Context.getBlockPointerType(BlockTy);
  
  BSI->TheDecl->setBody(Body.take());
  return new BlockExpr(BSI->TheDecl, BlockTy);
}

/// ExprsMatchFnType - return true if the Exprs in array Args have
/// QualTypes that match the QualTypes of the arguments of the FnType.
/// The number of arguments has already been validated to match the number of
/// arguments in FnType.
static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
                             ASTContext &Context) {
  unsigned NumParams = FnType->getNumArgs();
  for (unsigned i = 0; i != NumParams; ++i) {
    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));

    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
      return false;
  }
  return true;
}

Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
                                         SourceLocation *CommaLocs,
                                         SourceLocation BuiltinLoc,
                                         SourceLocation RParenLoc) {
  // __builtin_overload requires at least 2 arguments
  if (NumArgs < 2)
    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
                SourceRange(BuiltinLoc, RParenLoc));

  // The first argument is required to be a constant expression.  It tells us
  // the number of arguments to pass to each of the functions to be overloaded.
  Expr **Args = reinterpret_cast<Expr**>(args);
  Expr *NParamsExpr = Args[0];
  llvm::APSInt constEval(32);
  SourceLocation ExpLoc;
  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
                NParamsExpr->getSourceRange());
  
  // Verify that the number of parameters is > 0
  unsigned NumParams = constEval.getZExtValue();
  if (NumParams == 0)
    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
                NParamsExpr->getSourceRange());
  // Verify that we have at least 1 + NumParams arguments to the builtin.
  if ((NumParams + 1) > NumArgs)
    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
                SourceRange(BuiltinLoc, RParenLoc));

  // Figure out the return type, by matching the args to one of the functions
  // listed after the parameters.
  OverloadExpr *OE = 0;
  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
    // UsualUnaryConversions will convert the function DeclRefExpr into a 
    // pointer to function.
    Expr *Fn = UsualUnaryConversions(Args[i]);
    const FunctionTypeProto *FnType = 0;
    if (const PointerType *PT = Fn->getType()->getAsPointerType())
      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
 
    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
    // parameters, and the number of parameters must match the value passed to
    // the builtin.
    if (!FnType || (FnType->getNumArgs() != NumParams))
      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype, 
                  Fn->getSourceRange());

    // Scan the parameter list for the FunctionType, checking the QualType of
    // each parameter against the QualTypes of the arguments to the builtin.
    // If they match, return a new OverloadExpr.
    if (ExprsMatchFnType(Args+1, FnType, Context)) {
      if (OE)
        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
                    OE->getFn()->getSourceRange());
      // Remember our match, and continue processing the remaining arguments
      // to catch any errors.
      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
                            BuiltinLoc, RParenLoc);
    }
  }
  // Return the newly created OverloadExpr node, if we succeded in matching
  // exactly one of the candidate functions.
  if (OE)
    return OE;

  // If we didn't find a matching function Expr in the __builtin_overload list
  // the return an error.
  std::string typeNames;
  for (unsigned i = 0; i != NumParams; ++i) {
    if (i != 0) typeNames += ", ";
    typeNames += Args[i+1]->getType().getAsString();
  }

  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
              SourceRange(BuiltinLoc, RParenLoc));
}

Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
                                  ExprTy *expr, TypeTy *type,
                                  SourceLocation RPLoc) {
  Expr *E = static_cast<Expr*>(expr);
  QualType T = QualType::getFromOpaquePtr(type);

  InitBuiltinVaListType();

  // Get the va_list type
  QualType VaListType = Context.getBuiltinVaListType();
  // Deal with implicit array decay; for example, on x86-64,
  // va_list is an array, but it's supposed to decay to
  // a pointer for va_arg.
  if (VaListType->isArrayType())
    VaListType = Context.getArrayDecayedType(VaListType);
  // Make sure the input expression also decays appropriately.
  UsualUnaryConversions(E);

  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
    return Diag(E->getLocStart(),
                diag::err_first_argument_to_va_arg_not_of_type_va_list,
                E->getType().getAsString(),
                E->getSourceRange());
  
  // FIXME: Warn if a non-POD type is passed in.
  
  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
}

bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
                                    SourceLocation Loc,
                                    QualType DstType, QualType SrcType,
                                    Expr *SrcExpr, const char *Flavor) {
  // Decode the result (notice that AST's are still created for extensions).
  bool isInvalid = false;
  unsigned DiagKind;
  switch (ConvTy) {
  default: assert(0 && "Unknown conversion type");
  case Compatible: return false;
  case PointerToInt:
    DiagKind = diag::ext_typecheck_convert_pointer_int;
    break;
  case IntToPointer:
    DiagKind = diag::ext_typecheck_convert_int_pointer;
    break;
  case IncompatiblePointer:
    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
    break;
  case FunctionVoidPointer:
    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
    break;
  case CompatiblePointerDiscardsQualifiers:
    // If the qualifiers lost were because we were applying the
    // (deprecated) C++ conversion from a string literal to a char*
    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
    // Ideally, this check would be performed in
    // CheckPointerTypesForAssignment. However, that would require a
    // bit of refactoring (so that the second argument is an
    // expression, rather than a type), which should be done as part
    // of a larger effort to fix CheckPointerTypesForAssignment for
    // C++ semantics.
    if (getLangOptions().CPlusPlus &&
        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
      return false;
    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
    break;
  case IntToBlockPointer:
    DiagKind = diag::err_int_to_block_pointer;
    break;
  case IncompatibleBlockPointer:
    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
    break;
  case BlockVoidPointer:
    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
    break;
  case IncompatibleObjCQualifiedId:
    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since 
    // it can give a more specific diagnostic.
    DiagKind = diag::warn_incompatible_qualified_id;
    break;
  case Incompatible:
    DiagKind = diag::err_typecheck_convert_incompatible;
    isInvalid = true;
    break;
  }
  
  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
       SrcExpr->getSourceRange());
  return isInvalid;
}
OpenPOWER on IntegriCloud