summaryrefslogtreecommitdiffstats
path: root/clang/lib/Lex/PTHLexer.cpp
blob: 2ec01b27ebd9a48400f2a9fe0a838405836f1093 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PTHLexer interface.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Lex/PTHLexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Token.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/OwningPtr.h"

using namespace clang;

#define DISK_TOKEN_SIZE (2+3*4)

PTHLexer::PTHLexer(Preprocessor& pp, SourceLocation fileloc, const char* D,
                   const char* ppcond, PTHManager& PM)
  : PreprocessorLexer(&pp, fileloc), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
    PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM), NeedsFetching(true) {
    // Make sure the EofToken is completely clean.
    EofToken.startToken();
  }

Token PTHLexer::GetToken() {
  // Read the next token, or if we haven't advanced yet, get the last
  // token read.
  if (NeedsFetching) {
    NeedsFetching = false;
    ReadToken(LastFetched);
  }
  
  Token Tok = LastFetched;
  
  // If we are in raw mode, zero out identifier pointers.  This is
  // needed for 'pragma poison'.  Note that this requires that the Preprocessor
  // can go back to the original source when it calls getSpelling().
  if (LexingRawMode && Tok.is(tok::identifier))
    Tok.setIdentifierInfo(0);

  return Tok;
}

void PTHLexer::Lex(Token& Tok) {
LexNextToken:
  Tok = GetToken();
  
  if (AtLastToken()) {
    Preprocessor *PPCache = PP;

    if (LexEndOfFile(Tok))
      return;

    assert(PPCache && "Raw buffer::LexEndOfFile should return a token");
    return PPCache->Lex(Tok);
  }
  
  // Don't advance to the next token yet.  Check if we are at the
  // start of a new line and we're processing a directive.  If so, we
  // consume this token twice, once as an tok::eom.
  if (Tok.isAtStartOfLine() && ParsingPreprocessorDirective) {
    ParsingPreprocessorDirective = false;
    Tok.setKind(tok::eom);
    MIOpt.ReadToken();
    return;
  }
  
  // Advance to the next token.
  AdvanceToken();
    
  if (Tok.is(tok::hash)) {    
    if (Tok.isAtStartOfLine()) {
      LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
      if (!LexingRawMode) {
        PP->HandleDirective(Tok);

        if (PP->isCurrentLexer(this))
          goto LexNextToken;
        
        return PP->Lex(Tok);
      }
    }
  }

  MIOpt.ReadToken();
  
  if (Tok.is(tok::identifier)) {
    if (LexingRawMode) return;
    return PP->HandleIdentifier(Tok);
  }  
}

bool PTHLexer::LexEndOfFile(Token &Tok) {
  
  if (ParsingPreprocessorDirective) {
    ParsingPreprocessorDirective = false;
    Tok.setKind(tok::eom);
    MIOpt.ReadToken();
    return true; // Have a token.
  }
  
  if (LexingRawMode) {
    MIOpt.ReadToken();
    return true;  // Have an eof token.
  }
  
  // FIXME: Issue diagnostics similar to Lexer.
  return PP->HandleEndOfFile(Tok, false);
}

void PTHLexer::setEOF(Token& Tok) {
  assert(!EofToken.is(tok::eof));
  Tok = EofToken;
}

void PTHLexer::DiscardToEndOfLine() {
  assert(ParsingPreprocessorDirective && ParsingFilename == false &&
         "Must be in a preprocessing directive!");

  // Already at end-of-file?
  if (AtLastToken())
    return;

  // Find the first token that is not the start of the *current* line.
  Token T;
  for (Lex(T); !AtLastToken(); Lex(T))
    if (GetToken().isAtStartOfLine())
      return;
}

//===----------------------------------------------------------------------===//
// Utility methods for reading from the mmap'ed PTH file.
//===----------------------------------------------------------------------===//

static inline uint8_t Read8(const char*& data) {
  return (uint8_t) *(data++);
}

static inline uint32_t Read32(const char*& data) {
  uint32_t V = (uint32_t) Read8(data);
  V |= (((uint32_t) Read8(data)) << 8);
  V |= (((uint32_t) Read8(data)) << 16);
  V |= (((uint32_t) Read8(data)) << 24);
  return V;
}

/// SkipBlock - Used by Preprocessor to skip the current conditional block.
bool PTHLexer::SkipBlock() {
  assert(CurPPCondPtr && "No cached PP conditional information.");
  assert(LastHashTokPtr && "No known '#' token.");
  
  const char* HashEntryI = 0;
  uint32_t Offset; 
  uint32_t TableIdx;
  
  do {
    // Read the token offset from the side-table.
    Offset = Read32(CurPPCondPtr);
    
    // Read the target table index from the side-table.    
    TableIdx = Read32(CurPPCondPtr);
    
    // Compute the actual memory address of the '#' token data for this entry.
    HashEntryI = TokBuf + Offset;

    // Optmization: "Sibling jumping".  #if...#else...#endif blocks can
    //  contain nested blocks.  In the side-table we can jump over these
    //  nested blocks instead of doing a linear search if the next "sibling"
    //  entry is not at a location greater than LastHashTokPtr.
    if (HashEntryI < LastHashTokPtr && TableIdx) {
      // In the side-table we are still at an entry for a '#' token that
      // is earlier than the last one we saw.  Check if the location we would
      // stride gets us closer.
      const char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
      assert(NextPPCondPtr >= CurPPCondPtr);
      // Read where we should jump to.
      uint32_t TmpOffset = Read32(NextPPCondPtr);
      const char* HashEntryJ = TokBuf + TmpOffset;
      
      if (HashEntryJ <= LastHashTokPtr) {
        // Jump directly to the next entry in the side table.
        HashEntryI = HashEntryJ;
        Offset = TmpOffset;
        TableIdx = Read32(NextPPCondPtr);
        CurPPCondPtr = NextPPCondPtr;
      }
    }
  }
  while (HashEntryI < LastHashTokPtr);  
  assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
  assert(TableIdx && "No jumping from #endifs.");
  
  // Update our side-table iterator.
  const char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
  assert(NextPPCondPtr >= CurPPCondPtr);
  CurPPCondPtr = NextPPCondPtr;
  
  // Read where we should jump to.
  HashEntryI = TokBuf + Read32(NextPPCondPtr);
  uint32_t NextIdx = Read32(NextPPCondPtr);
  
  // By construction NextIdx will be zero if this is a #endif.  This is useful
  // to know to obviate lexing another token.
  bool isEndif = NextIdx == 0;
  NeedsFetching = true;
  
  // This case can occur when we see something like this:
  //
  //  #if ...
  //   /* a comment or nothing */
  //  #elif
  //
  // If we are skipping the first #if block it will be the case that CurPtr
  // already points 'elif'.  Just return.
  
  if (CurPtr > HashEntryI) {
    assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
    // Did we reach a #endif?  If so, go ahead and consume that token as well.
    if (isEndif)
      CurPtr += DISK_TOKEN_SIZE;
    else
      LastHashTokPtr = HashEntryI;
    
    return isEndif;
  }

  // Otherwise, we need to advance.  Update CurPtr to point to the '#' token.
  CurPtr = HashEntryI;
  
  // Update the location of the last observed '#'.  This is useful if we
  // are skipping multiple blocks.
  LastHashTokPtr = CurPtr;
  
#ifndef DEBUG
  // In a debug build we should verify that the token is really a '#' that
  // appears at the start of the line.
  Token Tok;
  ReadToken(Tok);
  assert(Tok.isAtStartOfLine() && Tok.is(tok::hash));
#else
  // In a full release build we can just skip the token entirely.
  CurPtr += DISK_TOKEN_SIZE;
#endif

  // Did we reach a #endif?  If so, go ahead and consume that token as well.
  if (isEndif) { CurPtr += DISK_TOKEN_SIZE; }

  return isEndif;
}

//===----------------------------------------------------------------------===//
// Token reconstruction from the PTH file.
//===----------------------------------------------------------------------===//

void PTHLexer::ReadToken(Token& T) {
  // Clear the token.
  // FIXME: Setting the flags directly should obviate this step.
  T.startToken();
  
  // Shadow CurPtr into an automatic variable so that Read8 doesn't load and
  // store back into the instance variable.
  const char *CurPtrShadow = CurPtr;
  
  // Read the type of the token.
  T.setKind((tok::TokenKind) Read8(CurPtrShadow));
  
  // Set flags.  This is gross, since we are really setting multiple flags.
  T.setFlag((Token::TokenFlags) Read8(CurPtrShadow));
  
  // Set the IdentifierInfo* (if any).
  T.setIdentifierInfo(PTHMgr.ReadIdentifierInfo(CurPtrShadow));
  
  // Set the SourceLocation.  Since all tokens are constructed using a
  // raw, they will all be offseted from the same FileID.
  T.setLocation(SourceLocation::getFileLoc(FileID, Read32(CurPtrShadow)));
  
  // Finally, read and set the length of the token.
  T.setLength(Read32(CurPtrShadow));
  
  CurPtr = CurPtrShadow;
}

//===----------------------------------------------------------------------===//
// Internal Data Structures for PTH file lookup and resolving identifiers.
//===----------------------------------------------------------------------===//


/// PTHFileLookup - This internal data structure is used by the PTHManager
///  to map from FileEntry objects managed by FileManager to offsets within
///  the PTH file.
namespace {
class VISIBILITY_HIDDEN PTHFileLookup {
public:
  class Val {
    uint32_t TokenOff;
    uint32_t PPCondOff;
    
  public:
    Val() : TokenOff(~0) {}
    Val(uint32_t toff, uint32_t poff) : TokenOff(toff), PPCondOff(poff) {}
    
    uint32_t getTokenOffset() const {
      assert(TokenOff != ~((uint32_t)0) && "PTHFileLookup entry initialized.");
      return TokenOff;
    }
    
    uint32_t gettPPCondOffset() const {
      assert(TokenOff != ~((uint32_t)0) && "PTHFileLookup entry initialized.");
      return PPCondOff;
    }
    
    bool isValid() const { return TokenOff != ~((uint32_t)0); }
  };
  
private:
  llvm::StringMap<Val> FileMap;
  
public:
  PTHFileLookup() {};
  
  Val Lookup(const FileEntry* FE) {
    const char* s = FE->getName();
    unsigned size = strlen(s);
    return FileMap.GetOrCreateValue(s, s+size).getValue();
  }
  
  void ReadTable(const char* D) {    
    uint32_t N = Read32(D);     // Read the length of the table.
    
    for ( ; N > 0; --N) {       // The rest of the data is the table itself.
      uint32_t len = Read32(D);
      const char* s = D;
      D += len;
      uint32_t TokenOff = Read32(D);
      FileMap.GetOrCreateValue(s, s+len).getValue() = Val(TokenOff, Read32(D));      
    }
  }
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// PTHManager methods.
//===----------------------------------------------------------------------===//

PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
                       const char* idDataTable, IdentifierInfo** perIDCache, 
                       Preprocessor& pp)
: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
  IdDataTable(idDataTable), ITable(pp.getIdentifierTable()), PP(pp) {}

PTHManager::~PTHManager() {
  delete Buf;
  delete (PTHFileLookup*) FileLookup;
  free(PerIDCache);
}

PTHManager* PTHManager::Create(const std::string& file, Preprocessor& PP) {
  
  // Memory map the PTH file.
  llvm::OwningPtr<llvm::MemoryBuffer>
  File(llvm::MemoryBuffer::getFile(file.c_str()));
  
  if (!File)
    return 0;
  
  // Get the buffer ranges and check if there are at least three 32-bit
  // words at the end of the file.
  const char* BufBeg = File->getBufferStart();
  const char* BufEnd = File->getBufferEnd();
  
  if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) {
    assert(false && "Invalid PTH file.");
    return 0; // FIXME: Proper error diagnostic?
  }
  
  // Compute the address of the index table at the end of the PTH file.
  // This table contains the offset of the file lookup table, the
  // persistent ID -> identifer data table.
  const char* EndTable = BufEnd - sizeof(uint32_t)*3;
  
  // Construct the file lookup table.  This will be used for mapping from
  // FileEntry*'s to cached tokens.
  const char* FileTableOffset = EndTable + sizeof(uint32_t)*2;
  const char* FileTable = BufBeg + Read32(FileTableOffset);
  
  if (!(FileTable > BufBeg && FileTable < BufEnd)) {
    assert(false && "Invalid PTH file.");
    return 0; // FIXME: Proper error diagnostic?
  }
  
  llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup());
  FL->ReadTable(FileTable);
  
  // Get the location of the table mapping from persistent ids to the
  // data needed to reconstruct identifiers.
  const char* IDTableOffset = EndTable + sizeof(uint32_t)*1;
  const char* IData = BufBeg + Read32(IDTableOffset);
  if (!(IData > BufBeg && IData < BufEnd)) {
    assert(false && "Invalid PTH file.");
    return 0; // FIXME: Proper error diagnostic?
  }
  
  // Get the number of IdentifierInfos and pre-allocate the identifier cache.
  uint32_t NumIds = Read32(IData);

  // Pre-allocate the peristent ID -> IdentifierInfo* cache.  We use calloc()
  // so that we in the best case only zero out memory once when the OS returns
  // us new pages.
  IdentifierInfo** PerIDCache =
    (IdentifierInfo**) calloc(NumIds, sizeof(*PerIDCache));
  
  if (!PerIDCache) {
    assert(false && "Could not allocate Persistent ID cache.");
    return 0;
  }
  
  // Create the new lexer.
  return new PTHManager(File.take(), FL.take(), IData, PerIDCache, PP);
}

IdentifierInfo* PTHManager::ReadIdentifierInfo(const char*& D) {
  // Read the persistent ID from the PTH file.
  uint32_t persistentID = Read32(D);
  
  // A persistent ID of '0' always maps to NULL.
  if (!persistentID)
    return 0;
  
  // Adjust the persistent ID by subtracting '1' so that it can be used
  // as an index within a table in the PTH file.
  --persistentID;
  
  // Check if the IdentifierInfo has already been resolved.
  IdentifierInfo*& II = PerIDCache[persistentID];
  if (II) return II;
  
  // Look in the PTH file for the string data for the IdentifierInfo object.
  const char* TableEntry = IdDataTable + sizeof(uint32_t) * persistentID;
  const char* IDData = Buf->getBufferStart() + Read32(TableEntry);
  assert(IDData < Buf->getBufferEnd());
  
  // Read the length of the string.
  uint32_t len = Read32(IDData);  
  
  // Get the IdentifierInfo* with the specified string.
  II = &ITable.get(IDData, IDData+len);
  return II;
}

PTHLexer* PTHManager::CreateLexer(unsigned FileID, const FileEntry* FE) {
  
  if (!FE)
    return 0;
  
  // Lookup the FileEntry object in our file lookup data structure.  It will
  // return a variant that indicates whether or not there is an offset within
  // the PTH file that contains cached tokens.
  PTHFileLookup::Val FileData = ((PTHFileLookup*) FileLookup)->Lookup(FE);
  
  if (!FileData.isValid()) // No tokens available.
    return 0;
  
  // Compute the offset of the token data within the buffer.
  const char* data = Buf->getBufferStart() + FileData.getTokenOffset();

  // Get the location of pp-conditional table.
  const char* ppcond = Buf->getBufferStart() + FileData.gettPPCondOffset();
  uint32_t len = Read32(ppcond);  
  if (len == 0) ppcond = 0;
  
  assert(data < Buf->getBufferEnd());
  return new PTHLexer(PP, SourceLocation::getFileLoc(FileID, 0), data, ppcond,
                      *this); 
}
OpenPOWER on IntegriCloud